Microbial polysaccharides biosynthesis and their regulatory strategies

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dafang Yin, Yadong Zhong, Jielun Hu
{"title":"Microbial polysaccharides biosynthesis and their regulatory strategies","authors":"Dafang Yin,&nbsp;Yadong Zhong,&nbsp;Jielun Hu","doi":"10.1016/j.ijbiomac.2025.143013","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial polysaccharides hold significant potential for various applications, including food, cosmetics, petroleum, and pharmaceuticals. A deeper understanding of their biosynthetic pathways and regulatory strategies is crucial for enhancing production efficiency and reducing associated costs. To summarize synthetic biological modification strategies for microbial polysaccharides from a hierarchical perspective, this review classifies these polymers into three categories based on the depths of carried out research regarding their biosynthetic pathways and regulatory strategies, i.e., (1) microbial polysaccharides with well-elucidated biosynthetic pathways, (2) microbial polysaccharides with well-elucidated precursor sugar biosynthetic pathways but synthase-encoding genes incompletely understood, and (3) those whose biosynthesis depends on a single synthetic enzyme. We systematically summarize the biosynthetic pathways of these three categories and provide insights into yield-improvement strategies. This review aims to serve as a valuable reference for metabolic regulation of microbial polysaccharides and to facilitate future advances in their production.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"308 ","pages":"Article 143013"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025035652","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial polysaccharides hold significant potential for various applications, including food, cosmetics, petroleum, and pharmaceuticals. A deeper understanding of their biosynthetic pathways and regulatory strategies is crucial for enhancing production efficiency and reducing associated costs. To summarize synthetic biological modification strategies for microbial polysaccharides from a hierarchical perspective, this review classifies these polymers into three categories based on the depths of carried out research regarding their biosynthetic pathways and regulatory strategies, i.e., (1) microbial polysaccharides with well-elucidated biosynthetic pathways, (2) microbial polysaccharides with well-elucidated precursor sugar biosynthetic pathways but synthase-encoding genes incompletely understood, and (3) those whose biosynthesis depends on a single synthetic enzyme. We systematically summarize the biosynthetic pathways of these three categories and provide insights into yield-improvement strategies. This review aims to serve as a valuable reference for metabolic regulation of microbial polysaccharides and to facilitate future advances in their production.

Abstract Image

微生物多糖的生物合成及其调控策略
微生物多糖在食品、化妆品、石油和药品等方面具有巨大的应用潜力。更深入地了解它们的生物合成途径和调控策略对于提高生产效率和降低相关成本至关重要。为了从层次的角度总结微生物多糖的合成生物学修饰策略,本文根据对其生物合成途径和调控策略的研究深度,将这些聚合物分为三类:(1)生物合成途径已阐明的微生物多糖;(2)前体糖生物合成途径明确但合成酶编码基因不完全清楚的微生物多糖;(3)生物合成依赖于单一合成酶的微生物多糖。我们系统地总结了这三类的生物合成途径,并提供了产量提高策略的见解。本文旨在为微生物多糖的代谢调控提供有价值的参考,并促进其生产的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信