Zhi-jia Zhang , Jian-qiang Wang , Yong-jing Wang , Qian-cheng Zhang , Jian-kai Jiao , Jian-hua Liu , Ya-guang Sui , Xin Wei
{"title":"Superior compressive performance of a novel plate-added X-lattice core sandwich structure at elevated temperatures","authors":"Zhi-jia Zhang , Jian-qiang Wang , Yong-jing Wang , Qian-cheng Zhang , Jian-kai Jiao , Jian-hua Liu , Ya-guang Sui , Xin Wei","doi":"10.1016/j.compositesa.2025.108992","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its orthotropic and three-dimensionally open-pored characteristic, the lattice sandwich structure having double-functionally load support and thermal management is considered one of the most typical and promising structures. However, a single core topology that concurrently excels in both mechanical and thermal performance remains a significant challenge. To address this issue, this paper employs a hybrid concept to design a novel plate-added X-lattice core sandwich structure (PX) with concurrent thermal and mechanical load-bearing capabilities. The compressive properties of PX, fabricated by Selective Laser Melting (SLM) technique, are comprehensively investigated by combining experimental, theoretical, and numerical methods at 25∼800 °C.The results indicate that the compressive strength of PX decreases by approximately 41.6 % as the temperature increases from 25 °C to 800 °C. During the compression process, there exists a mutual restraint effect between the struts of the X-lattice and the plate. Due to the limited plasticity of the printed Ni718 alloy, after yielding, the specimens exhibit catastrophic failure, leading to suboptimal energy absorption performance at varied temperatures. Additionally, systematic parameter studies quantitatively demonstrate the influence of specific parameters on the specified strength of the proposed structure. Compared with competing cellular materials, PX demonstrates superiority in specific strength on the material selection map.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"196 ","pages":"Article 108992"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25002866","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its orthotropic and three-dimensionally open-pored characteristic, the lattice sandwich structure having double-functionally load support and thermal management is considered one of the most typical and promising structures. However, a single core topology that concurrently excels in both mechanical and thermal performance remains a significant challenge. To address this issue, this paper employs a hybrid concept to design a novel plate-added X-lattice core sandwich structure (PX) with concurrent thermal and mechanical load-bearing capabilities. The compressive properties of PX, fabricated by Selective Laser Melting (SLM) technique, are comprehensively investigated by combining experimental, theoretical, and numerical methods at 25∼800 °C.The results indicate that the compressive strength of PX decreases by approximately 41.6 % as the temperature increases from 25 °C to 800 °C. During the compression process, there exists a mutual restraint effect between the struts of the X-lattice and the plate. Due to the limited plasticity of the printed Ni718 alloy, after yielding, the specimens exhibit catastrophic failure, leading to suboptimal energy absorption performance at varied temperatures. Additionally, systematic parameter studies quantitatively demonstrate the influence of specific parameters on the specified strength of the proposed structure. Compared with competing cellular materials, PX demonstrates superiority in specific strength on the material selection map.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.