Jonas Cassimon , Marthe Nees , Matthew Porters , Cristina Moyaert , Muhammad Adeel , Valentino Fantozzi , Lukasz Pazdur , Christophe M.L. Vande Velde , Philippe Nimmegeers , Pieter Billen
{"title":"Development of a HPLC protocol to characterize flexible PU foams in support of advanced recycling","authors":"Jonas Cassimon , Marthe Nees , Matthew Porters , Cristina Moyaert , Muhammad Adeel , Valentino Fantozzi , Lukasz Pazdur , Christophe M.L. Vande Velde , Philippe Nimmegeers , Pieter Billen","doi":"10.1016/j.polymertesting.2025.108829","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel High-Performance Liquid Chromatography (HPLC) protocol to characterize flexible polyurethane (PU) foams, aiming to enhance chemical recycling processes. The developed protocol consists of depolymerizing PU foam and analyzing the resultant mixture using HPLC. The developed HPLC method successfully separates the isocyanate derivatives, allowing for accurate quantification of both toluene diisocyanate (TDI) and methylene diphenyl diisocyanate (MDI) content. Additionally, the method identifies the formation of aromatic amines during depolymerization, serving as an indicator for urea bonds in the foam. Hydrolysis is used to estimate the isocyanate content of polymeric MDI foams, but this does not provide information on the urea content. Although polyol quantification was not yet achieved, the protocol determines the types, polarity, molecular weight, and distribution of polyols post-depolymerization using Gel Permeation Chromatography (GPC). This work provides a robust analytical framework for assessing PU foam waste streams, facilitating improved recycling and sustainability in PU applications.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"147 ","pages":"Article 108829"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825001436","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel High-Performance Liquid Chromatography (HPLC) protocol to characterize flexible polyurethane (PU) foams, aiming to enhance chemical recycling processes. The developed protocol consists of depolymerizing PU foam and analyzing the resultant mixture using HPLC. The developed HPLC method successfully separates the isocyanate derivatives, allowing for accurate quantification of both toluene diisocyanate (TDI) and methylene diphenyl diisocyanate (MDI) content. Additionally, the method identifies the formation of aromatic amines during depolymerization, serving as an indicator for urea bonds in the foam. Hydrolysis is used to estimate the isocyanate content of polymeric MDI foams, but this does not provide information on the urea content. Although polyol quantification was not yet achieved, the protocol determines the types, polarity, molecular weight, and distribution of polyols post-depolymerization using Gel Permeation Chromatography (GPC). This work provides a robust analytical framework for assessing PU foam waste streams, facilitating improved recycling and sustainability in PU applications.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.