Harnessing CO2 for sustainable bioelectricity: An engineered two-stage microbial co-culture approach with enhanced acetate metabolism

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Xiaoman Xie, Ying Wu, Yiran Lv, Shuhan Dai, Huanhuan Li, Li Xu, Min Yang, Jinyong Yan, Yunjun Yan
{"title":"Harnessing CO2 for sustainable bioelectricity: An engineered two-stage microbial co-culture approach with enhanced acetate metabolism","authors":"Xiaoman Xie,&nbsp;Ying Wu,&nbsp;Yiran Lv,&nbsp;Shuhan Dai,&nbsp;Huanhuan Li,&nbsp;Li Xu,&nbsp;Min Yang,&nbsp;Jinyong Yan,&nbsp;Yunjun Yan","doi":"10.1016/j.biortech.2025.132615","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change driven by rising atmospheric CO<sub>2</sub> levels underscores the urgent need for sustainable energy solutions. This study investigates the dual potential of CO<sub>2</sub> as a primary carbon source and acetate as an intermediate to simultaneously mitigate atmospheric CO<sub>2</sub> levels and generate bioelectricity using microbial fuel cells (MFCs). A synthetic microbial co-culture was developed, combining <em>Clostridium ljungdahlii</em> for CO<sub>2</sub> sequestration and <em>Shewanella oneidensis</em> MR-1 for bioelectricity production. To optimize MFC performance, <em>S. oneidensis</em> was modularly engineered to enhance acetate metabolism and electron transfer efficiency. Key modifications included upregulating ATP synthesis, introducing an ATP-independent acetate metabolic pathway, increasing NADH availability, and optimizing pili-based artificial conductive nanowires. These advancements achieved a maximum cell density (OD<sub>600</sub> = 0.611), a record output voltage of 351.3 mV, and a record power density of 94.9 mW/m<sup>2</sup> using acetate as the substrate. Furthermore, a two-stage biocatalytic system utilizing CO<sub>2</sub> as the primary carbon source yielded an output voltage of 209.3 mV and a power density of 65.0 mW/m<sup>2</sup>. These results highlight the potential of engineered microbial co-culture for efficient CO<sub>2</sub>-based bioelectricity generation, offering a scalable and sustainable pathway toward carbon–neutral energy production.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"431 ","pages":"Article 132615"},"PeriodicalIF":9.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425005814","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change driven by rising atmospheric CO2 levels underscores the urgent need for sustainable energy solutions. This study investigates the dual potential of CO2 as a primary carbon source and acetate as an intermediate to simultaneously mitigate atmospheric CO2 levels and generate bioelectricity using microbial fuel cells (MFCs). A synthetic microbial co-culture was developed, combining Clostridium ljungdahlii for CO2 sequestration and Shewanella oneidensis MR-1 for bioelectricity production. To optimize MFC performance, S. oneidensis was modularly engineered to enhance acetate metabolism and electron transfer efficiency. Key modifications included upregulating ATP synthesis, introducing an ATP-independent acetate metabolic pathway, increasing NADH availability, and optimizing pili-based artificial conductive nanowires. These advancements achieved a maximum cell density (OD600 = 0.611), a record output voltage of 351.3 mV, and a record power density of 94.9 mW/m2 using acetate as the substrate. Furthermore, a two-stage biocatalytic system utilizing CO2 as the primary carbon source yielded an output voltage of 209.3 mV and a power density of 65.0 mW/m2. These results highlight the potential of engineered microbial co-culture for efficient CO2-based bioelectricity generation, offering a scalable and sustainable pathway toward carbon–neutral energy production.

Abstract Image

利用二氧化碳可持续生物电:一种工程两阶段微生物共培养方法与增强醋酸代谢
大气中二氧化碳浓度上升导致的气候变化凸显了对可持续能源解决方案的迫切需求。本研究探讨了二氧化碳作为主要碳源和醋酸盐作为中间体的双重潜力,同时利用微生物燃料电池(mfc)降低大气二氧化碳水平并产生生物电。开发了一种合成微生物共培养物,将吸收二氧化碳的永达氏梭菌和产生生物电的希瓦氏菌MR-1组合在一起。为了优化MFC性能,采用模块化设计的方法提高了酸盐代谢和电子传递效率。关键的修改包括上调ATP合成,引入ATP独立的乙酸代谢途径,增加NADH的可用性,以及优化基于毛的人工导电纳米线。这些进步实现了最大电池密度(OD600 = 0.611),创纪录的351.3 mV输出电压,以及记录的94.9 mW/m2的功率密度,使用醋酸作为衬底。此外,利用CO2作为主要碳源的两级生物催化系统的输出电压为209.3 mV,功率密度为65.0 mW/m2。这些结果突出了工程微生物共培养在高效二氧化碳生物发电方面的潜力,为碳中和能源生产提供了一条可扩展和可持续的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信