Thermal stability assessment of mixed phase AlCoCrFeNi high entropy alloy: In silico studies

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Nabila Tabassum, Yamini Sudha Sistla
{"title":"Thermal stability assessment of mixed phase AlCoCrFeNi high entropy alloy: In silico studies","authors":"Nabila Tabassum,&nbsp;Yamini Sudha Sistla","doi":"10.1016/j.physb.2025.417319","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal stability assessment is crucial for materials used in high temperature applications. Present study uses atomistic simulations to demonstrate the changes in microstructural, mechanical and thermodynamic properties of mixed phase stabilized AlCoCrFeNi high entropy alloy (HEA) subjected to thermal treatment in the range of 298–2500K. Results infer that the alloy undergoes accelerated phase transition at 1700K as confirmed from a sudden increase in lattice parameters, cell volume, coefficient of thermal expansion, local lattice distortion and a sudden decrease in density, and number of nearest neighbors. The elastic moduli such as bulk modulus, shear modulus, Young's modulus, hardness, and fracture toughness, also showed a significant drop at 1700K followed by a rapid reduction till 2200K. The specific heat capacity, lattice thermal conductivity and Gruneisen parameter also showed abrupt changes at 1700 K confirming the onset of phase transition which was also confirmed from radial distribution function and centrosymmetry parameter at 298K and 1700K. The mixed phase AlCoCrFeNi has maintained good fracture toughness (4.8 MPa m<sup>0.5</sup>) and hardness (2.8 GPa) at 1700K. The HEA exhibited a very low lattice thermal conductivity of 0.71–3.5 W/m K. Analysis of mean square displacements of atoms indicates the displacement of atoms initiated at 1500 K and accelerated from 1800K which was also confirmed from microstructural changes depicting liquid phase through common neighbor analysis. Therefore, present study demonstrates the thermal stability and phase transition of mixed phase AlCoCrFeNi in the range of 1500–2200 K with a peak activity at 1700K.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"712 ","pages":"Article 417319"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004363","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal stability assessment is crucial for materials used in high temperature applications. Present study uses atomistic simulations to demonstrate the changes in microstructural, mechanical and thermodynamic properties of mixed phase stabilized AlCoCrFeNi high entropy alloy (HEA) subjected to thermal treatment in the range of 298–2500K. Results infer that the alloy undergoes accelerated phase transition at 1700K as confirmed from a sudden increase in lattice parameters, cell volume, coefficient of thermal expansion, local lattice distortion and a sudden decrease in density, and number of nearest neighbors. The elastic moduli such as bulk modulus, shear modulus, Young's modulus, hardness, and fracture toughness, also showed a significant drop at 1700K followed by a rapid reduction till 2200K. The specific heat capacity, lattice thermal conductivity and Gruneisen parameter also showed abrupt changes at 1700 K confirming the onset of phase transition which was also confirmed from radial distribution function and centrosymmetry parameter at 298K and 1700K. The mixed phase AlCoCrFeNi has maintained good fracture toughness (4.8 MPa m0.5) and hardness (2.8 GPa) at 1700K. The HEA exhibited a very low lattice thermal conductivity of 0.71–3.5 W/m K. Analysis of mean square displacements of atoms indicates the displacement of atoms initiated at 1500 K and accelerated from 1800K which was also confirmed from microstructural changes depicting liquid phase through common neighbor analysis. Therefore, present study demonstrates the thermal stability and phase transition of mixed phase AlCoCrFeNi in the range of 1500–2200 K with a peak activity at 1700K.
混合相AlCoCrFeNi高熵合金的热稳定性评价:硅研究
热稳定性评估是高温应用材料的关键。本研究采用原子模拟的方法研究了混合相稳定AlCoCrFeNi高熵合金(HEA)在298 ~ 2500k范围内热处理后的显微组织、力学和热力学性能的变化。结果表明,在1700K时,晶格参数、胞体体积、热膨胀系数、局部晶格畸变、密度和近邻数的突然减小都证实了合金经历了加速相变。弹性模量,如体积模量、剪切模量、杨氏模量、硬度和断裂韧性,在1700K时也有明显的下降,然后迅速下降到2200K。在1700K时,比热容、晶格导热系数和Gruneisen参数也出现突变,证实了相变的开始。298K和1700K时,径向分布函数和中心对称参数也证实了相变的开始。混合相AlCoCrFeNi在1700K时保持了良好的断裂韧性(4.8 MPa m0.5)和硬度(2.8 GPa)。HEA的晶格导热系数为0.71 ~ 3.5 W/m K,原子的均方位移分析表明,原子的位移始于1500 K,从1800K开始加速,这也通过共邻分析从表征液相的微观结构变化中得到了证实。因此,本研究证明了混合相AlCoCrFeNi在1500 - 2200k范围内的热稳定性和相变,其活度峰值在1700K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信