Development of a new kaolinite/phase change material (PCM) composite for latent heat thermal energy storage in building applications

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ayoub Ennamri , Jamal Bencaid , Khalid Draoui , Ayoub Ouarga , Hicham Abou Oualid
{"title":"Development of a new kaolinite/phase change material (PCM) composite for latent heat thermal energy storage in building applications","authors":"Ayoub Ennamri ,&nbsp;Jamal Bencaid ,&nbsp;Khalid Draoui ,&nbsp;Ayoub Ouarga ,&nbsp;Hicham Abou Oualid","doi":"10.1016/j.mseb.2025.118366","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal energy storage (TES) systems utilizing phase change materials (PCMs) are essential for sustainable energy strategies. However, large-scale implementation of PCMs is limited by leakage during phase transitions, low thermal conductivity, and poor cycling stability. This study presents a scalable mechanochemical approach to synthesize kaolinite/Glauber’s salt (Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O) composites using both in-situ and ex-situ methods, effectively addressing these challenges. The in-situ method integrates ball milling and PCM encapsulation, achieving a thermal conductivity of 1.94 W/m·K at 65 % PCM content 1.6 times higher than ex-situ samples and three times that of conventional kaolinite-based PCMs while completely preventing leakage at PCM contents ≤ 30 %.</div><div>Comprehensive structural and thermal characterizations (SEM, XRD, FTIR, DSC, and LFA) confirm interlayer expansion of 7.79 Å, enabling stable PCM encapsulation. A latent heat capacity of 44.25 J/g (NCM15) surpasses commercial paraffin PCMs. Long-term cycling tests show moderate thermal stability over 50 cycles, with &lt; 8 % loss in capacity. Suppressed supercooling (ΔT &lt; 5 °C) further ensures reliable phase transitions.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"319 ","pages":"Article 118366"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725003903","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal energy storage (TES) systems utilizing phase change materials (PCMs) are essential for sustainable energy strategies. However, large-scale implementation of PCMs is limited by leakage during phase transitions, low thermal conductivity, and poor cycling stability. This study presents a scalable mechanochemical approach to synthesize kaolinite/Glauber’s salt (Na2SO4·10H2O) composites using both in-situ and ex-situ methods, effectively addressing these challenges. The in-situ method integrates ball milling and PCM encapsulation, achieving a thermal conductivity of 1.94 W/m·K at 65 % PCM content 1.6 times higher than ex-situ samples and three times that of conventional kaolinite-based PCMs while completely preventing leakage at PCM contents ≤ 30 %.
Comprehensive structural and thermal characterizations (SEM, XRD, FTIR, DSC, and LFA) confirm interlayer expansion of 7.79 Å, enabling stable PCM encapsulation. A latent heat capacity of 44.25 J/g (NCM15) surpasses commercial paraffin PCMs. Long-term cycling tests show moderate thermal stability over 50 cycles, with < 8 % loss in capacity. Suppressed supercooling (ΔT < 5 °C) further ensures reliable phase transitions.

Abstract Image

一种新型高岭石/相变材料(PCM)复合材料的开发,用于建筑应用中的潜热热能储存
热能储存(TES)系统利用相变材料(PCMs)是必不可少的可持续能源战略。然而,PCMs的大规模应用受到相变过程中泄漏、导热性低和循环稳定性差的限制。本研究提出了一种可扩展的机械化学方法,利用原位和非原位方法合成高岭石/格劳伯盐(Na2SO4·10H2O)复合材料,有效地解决了这些挑战。原位方法将球磨和PCM封装结合在一起,在PCM含量为65%时,其导热系数为1.94 W/m·K,是非原位样品的1.6倍,是传统高岭石基PCM的3倍,同时在PCM含量≤30%时完全防止泄漏。综合结构和热表征(SEM, XRD, FTIR, DSC和LFA)证实层间膨胀为7.79 Å,实现了稳定的PCM封装。潜热容为44.25 J/g (NCM15),超过了商品石蜡PCMs。长期循环试验显示,50次以上的热稳定性中等,<;容量损失8%。抑制过冷(ΔT <;5°C)进一步确保可靠的相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信