Aya Adel Fath-All , Tarek Atia , Ayman Saber Mohamed , Neveen M. Khalil , Tamer D. Abdelaziz , Neamat A. Mahmoud , Abdallah Mohammed Elagali , Hader I. Sakr , Mohamed N. Abd El-Ghany
{"title":"Efficacy of yeast-mediated SeNPs on gastric ulcer healing and gut microbiota dysbiosis in male albino rats","authors":"Aya Adel Fath-All , Tarek Atia , Ayman Saber Mohamed , Neveen M. Khalil , Tamer D. Abdelaziz , Neamat A. Mahmoud , Abdallah Mohammed Elagali , Hader I. Sakr , Mohamed N. Abd El-Ghany","doi":"10.1016/j.tice.2025.102953","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Gastric ulcer is one of the most common gastrointestinal tract diseases with a higher extent in male patients to. Selenium nanoparticles (SeNPs) possess therapeutic benefits, including antimicrobial, antioxidant, anti-inflammatory, and anti-ulcerative agents. The study aimed to investigate the modulatory effect of yeast-mediated SeNPs on gastric ulcers and microbiota dysbiosis in a rat model.</div></div><div><h3>Method</h3><div>Twenty-four rats were randomly divided into four groups. Both the control and SeNPs-only groups received distilled water orally, and after 1 h, they received 2 % carboxymethyl cellulose (CMC). The ulcer model and SeNPs-treated groups received 99 % ethanol (5 ml/kg orally) for ulcer induction, followed by 2 % CMC after one hour. The SeNPs-treated group got SeNPs (60 mg/kg) suspended in 2 % CMC. We measured ulcer markers (ulcer index and gastric juice pH and volume and stomach tissue oxidative stress markers (malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO), and catalase (CAT)), in addition to histopathological examination of gastric tissues stained with three different satins: hematoxylin-eosin (H&E), periodic acid-Schiff (PAS), and Masson's trichrome stains (many-color dye), and microbiological analysis of freshly collected fecal sample.</div></div><div><h3>Results</h3><div>SeNPs treatment significantly decreased gastric volume, ulcer index, malondialdehyde, and increased glutathione levels. A macroscopic examination of the treated stomach revealed decreased ulcer lesion numbers. Furthermore, histopathological examination showed that SeNPs treatment repaired ulcerative gastric tissue through the regeneration of epithelial cells and reduction in damaged areas and collagen fibers. In the treated group, microbiological analysis of rat feces showed a significant increase in Leuconostoc pseudomesenteroides, Escherichia coli, and Enterococcus faecium counts.</div></div><div><h3>Conclusion</h3><div>This research suggests that SeNPs exhibit anti-ulcer activity and can accelerate ulcer healing via their antioxidant action. They also have a modulatory effect on gut microbiota dysbiosis associated with gastric ulcers. This is the first research studying the impact of safe yeast-mediated SeNPs on rat's gastric ulcer and gut microbiota.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"96 ","pages":"Article 102953"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625002332","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Gastric ulcer is one of the most common gastrointestinal tract diseases with a higher extent in male patients to. Selenium nanoparticles (SeNPs) possess therapeutic benefits, including antimicrobial, antioxidant, anti-inflammatory, and anti-ulcerative agents. The study aimed to investigate the modulatory effect of yeast-mediated SeNPs on gastric ulcers and microbiota dysbiosis in a rat model.
Method
Twenty-four rats were randomly divided into four groups. Both the control and SeNPs-only groups received distilled water orally, and after 1 h, they received 2 % carboxymethyl cellulose (CMC). The ulcer model and SeNPs-treated groups received 99 % ethanol (5 ml/kg orally) for ulcer induction, followed by 2 % CMC after one hour. The SeNPs-treated group got SeNPs (60 mg/kg) suspended in 2 % CMC. We measured ulcer markers (ulcer index and gastric juice pH and volume and stomach tissue oxidative stress markers (malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO), and catalase (CAT)), in addition to histopathological examination of gastric tissues stained with three different satins: hematoxylin-eosin (H&E), periodic acid-Schiff (PAS), and Masson's trichrome stains (many-color dye), and microbiological analysis of freshly collected fecal sample.
Results
SeNPs treatment significantly decreased gastric volume, ulcer index, malondialdehyde, and increased glutathione levels. A macroscopic examination of the treated stomach revealed decreased ulcer lesion numbers. Furthermore, histopathological examination showed that SeNPs treatment repaired ulcerative gastric tissue through the regeneration of epithelial cells and reduction in damaged areas and collagen fibers. In the treated group, microbiological analysis of rat feces showed a significant increase in Leuconostoc pseudomesenteroides, Escherichia coli, and Enterococcus faecium counts.
Conclusion
This research suggests that SeNPs exhibit anti-ulcer activity and can accelerate ulcer healing via their antioxidant action. They also have a modulatory effect on gut microbiota dysbiosis associated with gastric ulcers. This is the first research studying the impact of safe yeast-mediated SeNPs on rat's gastric ulcer and gut microbiota.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.