{"title":"Every cell every gene all at once: Systems genetic approaches toward corticogenesis","authors":"Boli Wu , Jiwen Li , Xin Jin","doi":"10.1016/j.conb.2025.103034","DOIUrl":null,"url":null,"abstract":"<div><div>The development of the cerebral cortex is a stepwise process that involves numerous cell types and signaling pathways to achieve the functional assembly of neural circuits. Our understanding of this process is primarily rooted in findings from studying transgenic knockout models, which reveal coordinated molecular actions, particularly transcription factor cascades critical for cell type acquisition and maintenance in a context-dependent manner. Further resolving their cell type specificity necessitates the use of high-throughput, high-content methodologies. Over the past decade, the emerging single-cell genomics and <em>in vivo</em> CRISPR tools have provided new approaches to study neurodevelopment with elevated scale and resolution. In this review, we discussed efforts to study mouse cortical cell fate determination using single-cell genomics methods. Additionally, we explored recent studies combining programmable gene editing with single-cell phenotypic assays to investigate the function of transcription factors in perinatal cortical development, delineating cell-type specific, functional cytoarchitecture of the developing brain.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"92 ","pages":"Article 103034"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000650","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The development of the cerebral cortex is a stepwise process that involves numerous cell types and signaling pathways to achieve the functional assembly of neural circuits. Our understanding of this process is primarily rooted in findings from studying transgenic knockout models, which reveal coordinated molecular actions, particularly transcription factor cascades critical for cell type acquisition and maintenance in a context-dependent manner. Further resolving their cell type specificity necessitates the use of high-throughput, high-content methodologies. Over the past decade, the emerging single-cell genomics and in vivo CRISPR tools have provided new approaches to study neurodevelopment with elevated scale and resolution. In this review, we discussed efforts to study mouse cortical cell fate determination using single-cell genomics methods. Additionally, we explored recent studies combining programmable gene editing with single-cell phenotypic assays to investigate the function of transcription factors in perinatal cortical development, delineating cell-type specific, functional cytoarchitecture of the developing brain.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience