Zeyao Chen , Changxi Zhang , Bing Xu , Zhiping Ma , Jing Zhao , Mengzhen Nie , Yaping Mao , Kechun Zhang
{"title":"Improved biosynthesis of C4 derivatives by engineered thiolase","authors":"Zeyao Chen , Changxi Zhang , Bing Xu , Zhiping Ma , Jing Zhao , Mengzhen Nie , Yaping Mao , Kechun Zhang","doi":"10.1016/j.ymben.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Ethylene glycol (EG), a major product of the enzymatic degradation of polyethylene terephthalate (PET), provides a promising feedstock for sustainable biomanufacturing. Herein, we developed a novel metabolic pathway using <em>Escherichia coli</em>(<em>E. coli</em>) as a host for the biosynthesis of four-carbon compounds such as 1,4-butanediol (1,4-BDO), 1,2,4-butanetriol (1,2,4-BTO), and succinate, from two-carbon substrates such as glycolate and EG. This represents an efficient strategy of using C2 precursors for these high-value chemicals. Through directed evolution of the β-ketoacyl thiolase B of <em>Cupriavidus necator</em> (CnBktB), one of the rate-limiting enzymes in the pathway, via an established growth-coupled screening platform, we identified the L89S mutant, which exhibits significantly enhanced catalytic efficiency in assimilating glycolyl-CoA and acetyl-CoA. Using glycolate and glucose as substrates, the route achieves production titers of >200 mg/L for 1,4-BDO, 266 mg/L for 1,2,4-BTO, and 9.22 g/L for succinate. Furthermore, integrating an upstream module for EG conversion to glycolate allows direct utilization of PET-derived EG, yielding 11.4 g/L succinate with 93 % conversion efficiency from EG. This work bridges the fields of synthetic biology and plastic waste recycling, demonstrating a sustainable and scalable route for converting PET-derived EG into valuable four-carbon compounds. The novel biosynthetic pathways developed in this study offer a foundation for advancing circular bioeconomy strategies and reducing the environmental impact of plastic waste.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"91 ","pages":"Pages 192-203"},"PeriodicalIF":6.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717625000771","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ethylene glycol (EG), a major product of the enzymatic degradation of polyethylene terephthalate (PET), provides a promising feedstock for sustainable biomanufacturing. Herein, we developed a novel metabolic pathway using Escherichia coli(E. coli) as a host for the biosynthesis of four-carbon compounds such as 1,4-butanediol (1,4-BDO), 1,2,4-butanetriol (1,2,4-BTO), and succinate, from two-carbon substrates such as glycolate and EG. This represents an efficient strategy of using C2 precursors for these high-value chemicals. Through directed evolution of the β-ketoacyl thiolase B of Cupriavidus necator (CnBktB), one of the rate-limiting enzymes in the pathway, via an established growth-coupled screening platform, we identified the L89S mutant, which exhibits significantly enhanced catalytic efficiency in assimilating glycolyl-CoA and acetyl-CoA. Using glycolate and glucose as substrates, the route achieves production titers of >200 mg/L for 1,4-BDO, 266 mg/L for 1,2,4-BTO, and 9.22 g/L for succinate. Furthermore, integrating an upstream module for EG conversion to glycolate allows direct utilization of PET-derived EG, yielding 11.4 g/L succinate with 93 % conversion efficiency from EG. This work bridges the fields of synthetic biology and plastic waste recycling, demonstrating a sustainable and scalable route for converting PET-derived EG into valuable four-carbon compounds. The novel biosynthetic pathways developed in this study offer a foundation for advancing circular bioeconomy strategies and reducing the environmental impact of plastic waste.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.