Blood–Brain Barrier-Permeable, Reactive Oxygen Species-Producing, and Mitochondria-Targeting Nanosystem Amplifies Glioblastoma Therapy

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rong Wang, Ke Wang, Zhuolin Li, Haoping Long, Dongyu Zhang, Yanting Li, Zhuolu Xia, Xindong Guo, Wei Chen*, Feng Cao* and Feng Jiang*, 
{"title":"Blood–Brain Barrier-Permeable, Reactive Oxygen Species-Producing, and Mitochondria-Targeting Nanosystem Amplifies Glioblastoma Therapy","authors":"Rong Wang,&nbsp;Ke Wang,&nbsp;Zhuolin Li,&nbsp;Haoping Long,&nbsp;Dongyu Zhang,&nbsp;Yanting Li,&nbsp;Zhuolu Xia,&nbsp;Xindong Guo,&nbsp;Wei Chen*,&nbsp;Feng Cao* and Feng Jiang*,&nbsp;","doi":"10.1021/acsami.5c0238410.1021/acsami.5c02384","DOIUrl":null,"url":null,"abstract":"<p >Gemcitabine (GTB), a clinically approved nucleoside analogue for cancer treatment, faces therapeutic limitations due to rapid enzymatic deactivation by cytidine deaminase (CDA) in tumor microenvironments. Over 90% of systemically administered GTB undergoes catalytic conversion to inactive 2′-deoxy-2′,2′-difluorouracil metabolites through CDA-mediated deamination. To address this pharmacological challenge, we developed a multifunctional codelivery nanosystem through strategic engineering of reactive oxygen species (ROS)-generating, mitochondria-targeting CPUL1-TPP (CT) nanoaggregates. These self-assembling CT/GTB complexes were further optimized with DSPE-MPEG2k (DP) and Angiopep-2-conjugated DSPE-MPEG2k (Ang-DP) to create blood–brain barrier (BBB)-penetrating Ang-DP@CT/GTB nanoparticles, enhancing both physiological stability and low-density lipoprotein receptor-related protein 1 (LRP1)-mediated glioma targeting. Comparative analyses revealed that Ang-DP@CT/GTB nanoparticles significantly enhanced GTB’s antiglioblastoma efficacy compared to free drug administration in both <i>in vitro</i> and <i>in vivo</i> models. Mechanistic investigations demonstrated that the nanosystem upregulates heme oxygenase-1 (HO-1), subsequently downregulating CDA expression to mitigate GTB metabolism. This coordinated molecular modulation prolongs GTB’s therapeutic activity while leveraging the ROS-generating capacity of CT components for synergistic tumor suppression. The BBB-permeable codelivery platform exemplifies a rational design paradigm for multifunctional carrier-free pure nanodrugs (PNDs), demonstrating how clinical drug reformulation can overcome inherent pharmacokinetic limitations. This nanotechnology-driven approach provides critical insights for optimizing chemotherapeutic performance through metabolic pathway regulation and targeted delivery engineering.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 18","pages":"27434–27447 27434–27447"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c02384","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gemcitabine (GTB), a clinically approved nucleoside analogue for cancer treatment, faces therapeutic limitations due to rapid enzymatic deactivation by cytidine deaminase (CDA) in tumor microenvironments. Over 90% of systemically administered GTB undergoes catalytic conversion to inactive 2′-deoxy-2′,2′-difluorouracil metabolites through CDA-mediated deamination. To address this pharmacological challenge, we developed a multifunctional codelivery nanosystem through strategic engineering of reactive oxygen species (ROS)-generating, mitochondria-targeting CPUL1-TPP (CT) nanoaggregates. These self-assembling CT/GTB complexes were further optimized with DSPE-MPEG2k (DP) and Angiopep-2-conjugated DSPE-MPEG2k (Ang-DP) to create blood–brain barrier (BBB)-penetrating Ang-DP@CT/GTB nanoparticles, enhancing both physiological stability and low-density lipoprotein receptor-related protein 1 (LRP1)-mediated glioma targeting. Comparative analyses revealed that Ang-DP@CT/GTB nanoparticles significantly enhanced GTB’s antiglioblastoma efficacy compared to free drug administration in both in vitro and in vivo models. Mechanistic investigations demonstrated that the nanosystem upregulates heme oxygenase-1 (HO-1), subsequently downregulating CDA expression to mitigate GTB metabolism. This coordinated molecular modulation prolongs GTB’s therapeutic activity while leveraging the ROS-generating capacity of CT components for synergistic tumor suppression. The BBB-permeable codelivery platform exemplifies a rational design paradigm for multifunctional carrier-free pure nanodrugs (PNDs), demonstrating how clinical drug reformulation can overcome inherent pharmacokinetic limitations. This nanotechnology-driven approach provides critical insights for optimizing chemotherapeutic performance through metabolic pathway regulation and targeted delivery engineering.

Abstract Image

血脑屏障渗透,活性氧产生,线粒体靶向纳米系统放大胶质母细胞瘤治疗
吉西他滨(GTB)是临床批准用于癌症治疗的核苷类似物,由于肿瘤微环境中胞苷脱氨酶(CDA)的快速酶失活,因此面临治疗局限性。超过90%的全身给药GTB通过cda介导的脱胺作用催化转化为无活性的2 ' -脱氧-2 ',2 ' -二氟尿嘧啶代谢物。为了解决这一药理挑战,我们通过对产生活性氧(ROS)、靶向线粒体的CPUL1-TPP (CT)纳米聚集体的战略性工程开发了一种多功能共递送纳米系统。用DSPE-MPEG2k (DP)和angiopep -2偶联的DSPE-MPEG2k (angiopep -2)进一步优化这些自组装的CT/GTB复合物,形成穿透血脑屏障(BBB)的Ang-DP@CT/GTB纳米颗粒,增强生理稳定性和低密度脂蛋白受体相关蛋白1 (LRP1)介导的胶质瘤靶向性。对比分析显示,在体外和体内模型中,Ang-DP@CT/GTB纳米颗粒与自由给药相比,显著增强了GTB抗胶质母细胞瘤的功效。机制研究表明,纳米系统上调血红素氧化酶-1 (HO-1),随后下调CDA表达,以减轻GTB代谢。这种协调的分子调节延长了GTB的治疗活性,同时利用CT成分产生ros的能力协同抑制肿瘤。血脑屏障渗透共递送平台是多功能无载体纯纳米药物(PNDs)的合理设计范例,展示了临床药物重新配方如何克服固有的药代动力学限制。这种纳米技术驱动的方法为通过代谢途径调节和靶向递送工程优化化疗性能提供了关键的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信