Dry Battery Electrode Technology: From Early Concepts to Industrial Applications

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Benjamin Schumm, Arthur Dupuy, Milena Lux, Christian Girsule, Susanne Dörfler, Florian Schmidt, Magdalena Fiedler, Maria Rosner, Felix Hippauf, Stefan Kaskel
{"title":"Dry Battery Electrode Technology: From Early Concepts to Industrial Applications","authors":"Benjamin Schumm, Arthur Dupuy, Milena Lux, Christian Girsule, Susanne Dörfler, Florian Schmidt, Magdalena Fiedler, Maria Rosner, Felix Hippauf, Stefan Kaskel","doi":"10.1002/aenm.202406011","DOIUrl":null,"url":null,"abstract":"The increasing demand for clean and efficient energy storage makes the environmentally friendly and cost-effective production of lithium-ion batteries a focal point in current battery research and development. Dry battery electrode (DBE) coatings play a crucial role in future production schemes as this technique does not require the use of toxic solvents and energy-intensive drying steps. This review article focuses on the most advanced DBE method today, based on fibrillated polytetrafluoroethylene (PTFE) binder. PTFE-based DBE coatings are suitable for both laboratory scale and mass production, which places them in a prominent position among DBE methods. The article covers the historical development of the process as well as current research in the field of lithium-ion batteries (LIB) and next-generation batteries such as lithium–sulfur batteries (LSB) and solid-state batteries (SSB). Both the suitability and existing drawbacks of PTFE-based dry coatings for these cell types are discussed. The article also provides insights into production research and describes approaches for scaling the method. Characteristic features and differences of the most important methods, the DRYtraec and Maxwell-process, are outlined. Finally, existing challenges in commercializing the technology are discussed, and an outlook on environmentally friendly PTFE-alternative binders is given.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"11 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202406011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for clean and efficient energy storage makes the environmentally friendly and cost-effective production of lithium-ion batteries a focal point in current battery research and development. Dry battery electrode (DBE) coatings play a crucial role in future production schemes as this technique does not require the use of toxic solvents and energy-intensive drying steps. This review article focuses on the most advanced DBE method today, based on fibrillated polytetrafluoroethylene (PTFE) binder. PTFE-based DBE coatings are suitable for both laboratory scale and mass production, which places them in a prominent position among DBE methods. The article covers the historical development of the process as well as current research in the field of lithium-ion batteries (LIB) and next-generation batteries such as lithium–sulfur batteries (LSB) and solid-state batteries (SSB). Both the suitability and existing drawbacks of PTFE-based dry coatings for these cell types are discussed. The article also provides insights into production research and describes approaches for scaling the method. Characteristic features and differences of the most important methods, the DRYtraec and Maxwell-process, are outlined. Finally, existing challenges in commercializing the technology are discussed, and an outlook on environmentally friendly PTFE-alternative binders is given.

Abstract Image

干电池电极技术:从早期概念到工业应用
随着对清洁高效能源存储需求的不断增长,环保高效的锂离子电池生产成为当前电池研发的焦点。干电池电极(DBE)涂层在未来的生产计划中发挥着至关重要的作用,因为该技术不需要使用有毒溶剂和能源密集型干燥步骤。本文综述了目前最先进的基于纤维化聚四氟乙烯(PTFE)粘结剂的DBE方法。ptfe基DBE涂料既适合实验室规模,也适合批量生产,这使其在DBE方法中处于突出地位。本文介绍了这一过程的历史发展,以及锂离子电池(LIB)和锂硫电池(LSB)、固态电池(SSB)等下一代电池领域的研究现状。讨论了聚四氟乙烯基干性涂料对这些电池类型的适用性和存在的缺点。本文还提供了对生产研究的见解,并描述了扩展该方法的方法。概述了最重要的两种方法——DRYtraec法和maxwell法的特点和区别。最后,讨论了该技术商业化存在的挑战,并对环境友好型聚四氟乙烯替代粘合剂进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信