Wild Cicer species exhibit superior leaf photosynthetic phosphorus- and water-use efficiencies compared with cultivated chickpea under low-phosphorus conditions

IF 8.3 1区 生物学 Q1 PLANT SCIENCES
New Phytologist Pub Date : 2025-05-05 DOI:10.1111/nph.70185
Jiayin Pang, Simiao Li, Ulrike Mathesius, Jens Berger, Weina Zhang, Komal D. Sawant, Rajeev K. Varshney, Kadambot H. M. Siddique, Hans Lambers
{"title":"Wild Cicer species exhibit superior leaf photosynthetic phosphorus- and water-use efficiencies compared with cultivated chickpea under low-phosphorus conditions","authors":"Jiayin Pang, Simiao Li, Ulrike Mathesius, Jens Berger, Weina Zhang, Komal D. Sawant, Rajeev K. Varshney, Kadambot H. M. Siddique, Hans Lambers","doi":"10.1111/nph.70185","DOIUrl":null,"url":null,"abstract":"<h2> Introduction</h2>\n<p>Chickpea (<i>Cicer arietinum</i>) is a vital legume crop for food and feed in developing countries (Foyer <i>et al</i>., <span>2016</span>). However, domestication has significantly narrowed its genetic diversity (Abbo <i>et al</i>., <span>2003</span>; Varshney <i>et al</i>., <span>2013</span>, <span>2021</span>; Marques <i>et al</i>., <span>2020</span>; Khan <i>et al</i>., <span>2024</span>). To address this limitation, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) developed a chickpea reference set of 300 accessions from 29 countries, representing diverse genetic backgrounds (Upadhyaya <i>et al</i>., <span>2008</span>). Studies on this set revealed significant genotypic variation in plant growth, shoot phosphorus (P) content, physiological P-use efficiency (PUE), leaf photosynthetic characteristics, photosynthetic PUE (PPUE), root morphology, carboxylate exudation, and arbuscular mycorrhizal fungal colonisation (Pang <i>et al</i>., <span>2018a</span>,<span>b</span>, <span>2023</span>; Wen <i>et al</i>., <span>2020</span>, <span>2022</span>). However, this reference set included only seven wild <i>Cicer</i> accessions due to the limited global collections available at the time (Berger <i>et al</i>., <span>2003</span>; Coyne <i>et al</i>., <span>2020</span>). Wild species are typically genetically much more diverse than their domesticated counterparts due to the domestication bottleneck (Tanksley &amp; McCouch, <span>1997</span>; Purugganan &amp; Fuller, <span>2009</span>). While crops are weak competitors in managed systems that minimize stress, wild progenitors such as wild <i>Cicer</i> thrive in unregulated low-fertility environments (Renzi <i>et al</i>., <span>2022</span>). Therefore, screening wild germplasm for nutrient acquisition capacity is crucial. Recent international collaborations have expanded wild <i>Cicer</i> collections (von Wettberg <i>et al</i>., <span>2018</span>), enabling exploration of their genetic diversity for abiotic stress tolerance, including low P availability.</p>\n<p><i>Cicer reticulatum</i>, the primary gene pool of cultivated chickpea, is fully compatible with domesticated <i>C. arietinum</i> (Coyne <i>et al</i>., <span>2020</span>). The secondary gene pool, <i>C. echinospermum</i>, exhibits variable compatibility with cultivated chickpea depending on the population (Kahraman <i>et al</i>., <span>2017</span>). Both wild species are restricted to south-eastern Anatolia, Türkiye, where they inhabit distinct ecological niches shaped by diverse soil substrates and a steep elevational gradient exceeding 1000 m (von Wettberg <i>et al</i>., <span>2018</span>). Therefore, localized adaptation underscores their potential for broadening the genetic base of chickpea and introducing adaptive traits lost during domestication (Croser <i>et al</i>., <span>2003</span>; von Wettberg <i>et al</i>., <span>2018</span>).</p>\n<p>Recent studies have explored wild <i>Cicer</i> species for genotypic variation under abiotic stress, such as heat (von Wettberg <i>et al</i>., <span>2018</span>), drought (von Wettberg <i>et al</i>., <span>2018</span>; Berger <i>et al</i>., <span>2020</span>), nitrogen (N) deficiency (Marques <i>et al</i>., <span>2020</span>), and aluminium toxicity (Vance <i>et al</i>., <span>2021</span>), biotic stress like <i>Helicoverpa armigera</i> infestation (von Wettberg <i>et al</i>., <span>2018</span>), and seed quality traits, including nutrient composition (von Wettberg <i>et al</i>., <span>2018</span>; Sharma <i>et al</i>., <span>2021</span>) and seed size (von Wettberg <i>et al</i>., <span>2018</span>). Given that wild <i>Cicer</i> species naturally inhabit low-P soils, they may possess traits for greater P-use efficiency.</p>\n<p>Phosphorus availability often limits crop production, with up to 80% of applied P fertilizer rendered unavailable to plants due to its conversion into insoluble complexes in acidic and alkaline soils (Raghothama, <span>1999</span>; Lambers, <span>2022</span>). Enhancing PUE, defined as increased yield per unit P applied, is an environmentally sustainable strategy (Rose <i>et al</i>., <span>2013</span>). PPUE, the photosynthesis rate per unit of leaf P, is a critical component of PUE, given that photosynthesis contributes over 90% of crop biomass (Veneklaas <i>et al</i>., <span>2012</span>; Cong <i>et al</i>., <span>2020</span>). Despite its importance, few studies have examined the effects of domestication on PUE, particularly PPUE in crops, including the chickpea breeding programme (Chen <i>et al</i>., <span>2024</span>; Wang <i>et al</i>., <span>2024</span>). Previous research demonstrated significant genotypic variation in PUE, including P-acquisition efficiency, physiological PUE, and PPUE among domesticated <i>C. arietinum</i> accessions under low-P conditions (Pang <i>et al</i>., <span>2018b</span>) and revealed biochemical mechanisms underpinning a high PPUE, such as a different allocation to foliar P fractions, with a lower allocation to Pi and metabolite P but a greater allocation to nucleic acid P (Wen <i>et al</i>., <span>2022</span>). However, the genetic diversity of P acquisition and PPUE in the genus <i>Cicer</i> remains unexamined, particularly among wild <i>Cicer</i> accessions.</p>\n<p>Domestication effects on leaf gas exchange traits vary among crops. For instance, Milla &amp; Matesanz (<span>2017</span>) reported reduced photosynthesis rates during the domestication of <i>Beta vulgaris</i>, <i>Helianthus annuus</i>, <i>Solanum lycopersicum</i>, and <i>Zea mays</i>. Conversely, studies have shown an increased photosynthesis rate in domesticated crops compared with their wild relatives, such as chickpea under both N-deficient and N-sufficient conditions (Marques <i>et al</i>., <span>2020</span>), cotton (<i>Gossypium hirsutum</i>) (Z. Y. Lei <i>et al</i>., <span>2023</span>), and soybean (<i>Glycine max</i>) (Chen <i>et al</i>., <span>2024</span>; Pelech <i>et al</i>., <span>2025</span>). Recently, Lei <i>et al</i>. (<span>2024</span>) reported stage-specific increases in photosynthesis rate during domestication, influenced by variation in light intensity. The transition from wild to semiwild accessions resulted in a faster photosynthesis rate and lower leaf mass per area (LMA) under high light intensity, whereas the transition from semiwild to domesticated accessions enhanced photosynthesis under low light intensity. Whether domestication similarly affects leaf gas exchange in <i>Cicer</i> grown under sufficient light intensity, particularly under low-P conditions, is unknown.</p>\n<p>Wild species and their relatives generally exhibit thicker leaves and higher LMA than their domesticated counterparts, as observed in <i>Cicer</i> (Marques <i>et al</i>., <span>2020</span>) and <i>Gossypium</i> (Lei <i>et al</i>., <span>2021</span>; Z. Y. Lei <i>et al</i>., <span>2023</span>). Higher LMA is often associated with resilience to drought by reducing wilting risk (Wright <i>et al</i>., <span>2001</span>). However, a trade-off between water-use efficiency (WUE) and photosynthetic N-use efficiency (PNUE) has been documented in noncrop plants (Field <i>et al</i>., <span>1983</span>; Wright <i>et al</i>., <span>2001</span>; Zhou <i>et al</i>., <span>2024</span>) as well as in <i>Triticum aestivum</i> (Van Den Boogaard <i>et al</i>., <span>1997</span>). For example, dry-site tree species maintain area-based photosynthesis rates with lower stomatal conductance by increasing leaf N concentrations, thus minimising water loss (Wright <i>et al</i>., <span>2001</span>). Whether this trade-off exists among <i>Cicer</i> species, particularly under low-P conditions, remains unknown.</p>\n<p>In this study, we used the wild <i>Cicer</i> collection to evaluate vegetative growth, photosynthesis characteristics, PPUE, and PNUE under low-P conditions. We hypothesized that: (1) significant variation in leaf gas exchange and PUE exists among wild <i>Cicer</i> accessions due to their distinct natural habitats; (2) variation among wild <i>Cicer</i> accessions exceeds that in cultivated <i>C. arietinum</i>; (3) wild <i>Cicer</i> species exhibit greater PPUE than domesticated chickpea; and (4) wild <i>Cicer</i> species display a trade-off between higher instantaneous intrinsic WUE and lower PNUE.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"5 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70185","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Chickpea (Cicer arietinum) is a vital legume crop for food and feed in developing countries (Foyer et al., 2016). However, domestication has significantly narrowed its genetic diversity (Abbo et al., 2003; Varshney et al., 2013, 2021; Marques et al., 2020; Khan et al., 2024). To address this limitation, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) developed a chickpea reference set of 300 accessions from 29 countries, representing diverse genetic backgrounds (Upadhyaya et al., 2008). Studies on this set revealed significant genotypic variation in plant growth, shoot phosphorus (P) content, physiological P-use efficiency (PUE), leaf photosynthetic characteristics, photosynthetic PUE (PPUE), root morphology, carboxylate exudation, and arbuscular mycorrhizal fungal colonisation (Pang et al., 2018a,b, 2023; Wen et al., 2020, 2022). However, this reference set included only seven wild Cicer accessions due to the limited global collections available at the time (Berger et al., 2003; Coyne et al., 2020). Wild species are typically genetically much more diverse than their domesticated counterparts due to the domestication bottleneck (Tanksley & McCouch, 1997; Purugganan & Fuller, 2009). While crops are weak competitors in managed systems that minimize stress, wild progenitors such as wild Cicer thrive in unregulated low-fertility environments (Renzi et al., 2022). Therefore, screening wild germplasm for nutrient acquisition capacity is crucial. Recent international collaborations have expanded wild Cicer collections (von Wettberg et al., 2018), enabling exploration of their genetic diversity for abiotic stress tolerance, including low P availability.

Cicer reticulatum, the primary gene pool of cultivated chickpea, is fully compatible with domesticated C. arietinum (Coyne et al., 2020). The secondary gene pool, C. echinospermum, exhibits variable compatibility with cultivated chickpea depending on the population (Kahraman et al., 2017). Both wild species are restricted to south-eastern Anatolia, Türkiye, where they inhabit distinct ecological niches shaped by diverse soil substrates and a steep elevational gradient exceeding 1000 m (von Wettberg et al., 2018). Therefore, localized adaptation underscores their potential for broadening the genetic base of chickpea and introducing adaptive traits lost during domestication (Croser et al., 2003; von Wettberg et al., 2018).

Recent studies have explored wild Cicer species for genotypic variation under abiotic stress, such as heat (von Wettberg et al., 2018), drought (von Wettberg et al., 2018; Berger et al., 2020), nitrogen (N) deficiency (Marques et al., 2020), and aluminium toxicity (Vance et al., 2021), biotic stress like Helicoverpa armigera infestation (von Wettberg et al., 2018), and seed quality traits, including nutrient composition (von Wettberg et al., 2018; Sharma et al., 2021) and seed size (von Wettberg et al., 2018). Given that wild Cicer species naturally inhabit low-P soils, they may possess traits for greater P-use efficiency.

Phosphorus availability often limits crop production, with up to 80% of applied P fertilizer rendered unavailable to plants due to its conversion into insoluble complexes in acidic and alkaline soils (Raghothama, 1999; Lambers, 2022). Enhancing PUE, defined as increased yield per unit P applied, is an environmentally sustainable strategy (Rose et al., 2013). PPUE, the photosynthesis rate per unit of leaf P, is a critical component of PUE, given that photosynthesis contributes over 90% of crop biomass (Veneklaas et al., 2012; Cong et al., 2020). Despite its importance, few studies have examined the effects of domestication on PUE, particularly PPUE in crops, including the chickpea breeding programme (Chen et al., 2024; Wang et al., 2024). Previous research demonstrated significant genotypic variation in PUE, including P-acquisition efficiency, physiological PUE, and PPUE among domesticated C. arietinum accessions under low-P conditions (Pang et al., 2018b) and revealed biochemical mechanisms underpinning a high PPUE, such as a different allocation to foliar P fractions, with a lower allocation to Pi and metabolite P but a greater allocation to nucleic acid P (Wen et al., 2022). However, the genetic diversity of P acquisition and PPUE in the genus Cicer remains unexamined, particularly among wild Cicer accessions.

Domestication effects on leaf gas exchange traits vary among crops. For instance, Milla & Matesanz (2017) reported reduced photosynthesis rates during the domestication of Beta vulgaris, Helianthus annuus, Solanum lycopersicum, and Zea mays. Conversely, studies have shown an increased photosynthesis rate in domesticated crops compared with their wild relatives, such as chickpea under both N-deficient and N-sufficient conditions (Marques et al., 2020), cotton (Gossypium hirsutum) (Z. Y. Lei et al., 2023), and soybean (Glycine max) (Chen et al., 2024; Pelech et al., 2025). Recently, Lei et al. (2024) reported stage-specific increases in photosynthesis rate during domestication, influenced by variation in light intensity. The transition from wild to semiwild accessions resulted in a faster photosynthesis rate and lower leaf mass per area (LMA) under high light intensity, whereas the transition from semiwild to domesticated accessions enhanced photosynthesis under low light intensity. Whether domestication similarly affects leaf gas exchange in Cicer grown under sufficient light intensity, particularly under low-P conditions, is unknown.

Wild species and their relatives generally exhibit thicker leaves and higher LMA than their domesticated counterparts, as observed in Cicer (Marques et al., 2020) and Gossypium (Lei et al., 2021; Z. Y. Lei et al., 2023). Higher LMA is often associated with resilience to drought by reducing wilting risk (Wright et al., 2001). However, a trade-off between water-use efficiency (WUE) and photosynthetic N-use efficiency (PNUE) has been documented in noncrop plants (Field et al., 1983; Wright et al., 2001; Zhou et al., 2024) as well as in Triticum aestivum (Van Den Boogaard et al., 1997). For example, dry-site tree species maintain area-based photosynthesis rates with lower stomatal conductance by increasing leaf N concentrations, thus minimising water loss (Wright et al., 2001). Whether this trade-off exists among Cicer species, particularly under low-P conditions, remains unknown.

In this study, we used the wild Cicer collection to evaluate vegetative growth, photosynthesis characteristics, PPUE, and PNUE under low-P conditions. We hypothesized that: (1) significant variation in leaf gas exchange and PUE exists among wild Cicer accessions due to their distinct natural habitats; (2) variation among wild Cicer accessions exceeds that in cultivated C. arietinum; (3) wild Cicer species exhibit greater PPUE than domesticated chickpea; and (4) wild Cicer species display a trade-off between higher instantaneous intrinsic WUE and lower PNUE.

与栽培鹰嘴豆相比,野生鹰嘴豆在低磷条件下表现出更高的叶片光合磷素和水分利用效率
鹰嘴豆(Cicer arietinum)是发展中国家重要的粮食和饲料豆类作物(Foyer et al., 2016)。然而,驯化大大缩小了其遗传多样性(Abbo et al., 2003;Varshney等人,2013,2021;Marques et al., 2020;Khan et al., 2024)。为了解决这一限制,国际半干旱热带作物研究所(ICRISAT)开发了一个鹰嘴豆参考集,其中包括来自29个国家的300个品种,代表了不同的遗传背景(Upadhyaya等,2008)。对这组植物的研究表明,在植物生长、茎部磷含量、生理磷利用效率(PUE)、叶片光合特性、光合PUE (PPUE)、根形态、羧酸盐渗出和丛枝菌根真菌定植方面存在显著的基因型差异(Pang et al., 2018a,b, 2023;Wen et al., 2020, 2022)。然而,由于当时全球可获得的馆藏有限,该参考集仅包括7种野生西塞虫(Berger et al., 2003;Coyne et al., 2020)。由于驯化瓶颈,野生物种通常比驯化物种在基因上更加多样化(Tanksley &amp;McCouch, 1997;Purugganan,Fuller, 2009)。虽然作物在压力最小化的管理系统中是弱竞争者,但野生祖代,如野生茜草,在不受管制的低肥力环境中茁壮成长(Renzi et al., 2022)。因此,筛选野生种质的营养获取能力至关重要。最近的国际合作扩大了野生Cicer的收藏范围(von Wettberg等人,2018),从而能够探索其非生物胁迫耐受性的遗传多样性,包括低磷有效性。栽培鹰嘴豆的主要基因库Cicer reticulatum与驯化的C. arietinum完全相容(Coyne et al., 2020)。次级基因库C. echinospermum与栽培鹰嘴豆的相容性随种群的不同而变化(Kahraman et al., 2017)。这两种野生物种都局限于<s:1>基耶省安纳托利亚东南部,在那里它们栖息在不同的土壤基质和超过1000米的陡峭海拔梯度形成的独特生态位(von Wettberg et al., 2018)。因此,局部适应强调了它们扩大鹰嘴豆遗传基础和引入驯化过程中失去的适应性状的潜力(Croser等,2003;von Wettberg et al., 2018)。最近的研究探索了野生Cicer物种在非生物胁迫下的基因型变异,如热(von Wettberg et al., 2018)、干旱(von Wettberg et al., 2018;Berger等人,2020)、氮(N)缺乏症(Marques等人,2020)和铝毒性(Vance等人,2021)、棉蚜感染等生物胁迫(von Wettberg等人,2018)和种子质量性状,包括营养成分(von Wettberg等人,2018);Sharma等人,2021)和种子大小(von Wettberg等人,2018)。考虑到野生苜蓿自然生长在低磷土壤中,它们可能具有更高的磷利用效率。磷的有效性通常限制作物生产,由于磷在酸性和碱性土壤中转化为不溶性复合体,高达80%的施用磷肥无法用于植物(Raghothama, 1999;琥珀,2022)。提高PUE,定义为每单位P的产量增加,是一种环境可持续战略(Rose et al., 2013)。考虑到光合作用对作物生物量的贡献超过90% (Veneklaas et al., 2012;Cong et al., 2020)。尽管其重要性,但很少有研究调查驯化对PUE的影响,特别是作物中的PUE,包括鹰嘴豆育种计划(Chen et al., 2024;Wang等人,2024)。先前的研究表明,在低磷条件下,驯化的鸡蒿品种在PUE方面存在显著的基因型差异,包括P获取效率、生理PUE和PPUE (Pang等,2018b),并揭示了高PUE的生化机制,如叶片P的分配不同,对Pi和代谢物P的分配较低,但对核酸P的分配较高(Wen等,2022)。然而,在西塞属植物中,特别是在野生西塞属植物中,P获取和PPUE的遗传多样性尚未得到研究。驯化对不同作物叶片气体交换性状的影响不尽相同。例如,米拉&;Matesanz(2017)报道了甜菜(Beta vulgaris)、向日葵(Helianthus annuus)、番茄茄(Solanum lycopersicum)和玉米(Zea mays)驯化过程中的光合速率降低。相反,研究表明,驯化作物的光合速率高于其野生近缘品种,如鹰嘴豆(Marques et al., 2020)、棉花(Gossypium hirsutum) (Z. Y. Lei et al., 2023)和大豆(Glycine max) (Chen et al., 2024;Pelech et al., 2025)。 最近,Lei等人(2024)报道了驯化过程中光合速率的阶段特异性增加,受光强变化的影响。高光强条件下,野生向半野生的过渡提高了光合速率,降低了叶面积质量(LMA),而低光强条件下,半野生向驯化的过渡提高了光合速率。在充足的光强条件下,特别是在低磷条件下,驯化是否同样影响茜草叶片气体交换尚不清楚。在Cicer (Marques et al., 2020)和Gossypium (Lei et al., 2021)中观察到,野生物种及其近缘种通常比驯化的同类具有更厚的叶子和更高的LMA;雷正英等,2023)。较高的LMA通常通过减少萎蔫风险与抗旱能力相关联(Wright等,2001)。然而,非作物植物的水分利用效率(WUE)和光合氮利用效率(PNUE)之间存在权衡(Field et al., 1983;Wright et al., 2001;Zhou et al., 2024)以及Triticum aestivum (Van Den Boogaard et al., 1997)。例如,干地树种通过增加叶片氮浓度来维持气孔导度较低的区域光合速率,从而最大限度地减少水分损失(Wright等,2001)。这种权衡是否存在于Cicer物种之间,特别是在低磷条件下,尚不清楚。在本研究中,我们利用野生Cicer收集来评估低磷条件下的营养生长、光合特性、PPUE和PNUE。研究结果表明:(1)由于不同的自然生境,野生植物叶片气体交换和PUE存在显著差异;(2)野生品种间差异大于栽培品种间差异;(3)野生鹰嘴豆的pue值高于驯化鹰嘴豆;(4)野生Cicer物种表现出较高的瞬时内在WUE和较低的pue之间的权衡关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信