Protection of naringenin chalcone by a pathogenesis-related 10 protein promotes flavonoid biosynthesis in Marchantia polymorpha

IF 8.3 1区 生物学 Q1 PLANT SCIENCES
New Phytologist Pub Date : 2025-05-05 DOI:10.1111/nph.70194
Yanfei Zhou, Cyril Hamiaux, Christelle M. Andre, Janine M. Cooney, Kathy E. Schwinn, John W. van Klink, John L. Bowman, Kevin M. Davies, Nick W. Albert
{"title":"Protection of naringenin chalcone by a pathogenesis-related 10 protein promotes flavonoid biosynthesis in Marchantia polymorpha","authors":"Yanfei Zhou, Cyril Hamiaux, Christelle M. Andre, Janine M. Cooney, Kathy E. Schwinn, John W. van Klink, John L. Bowman, Kevin M. Davies, Nick W. Albert","doi":"10.1111/nph.70194","DOIUrl":null,"url":null,"abstract":"<h2> Introduction</h2>\n<p>Flavonoid biosynthesis, a branch of the phenylpropanoid pathway, is a central specialised metabolite pathway of land plants. Flavonoids are key to how plants interact with the terrestrial environment, helping in tolerance of diverse abiotic stresses and attacks from pests and pathogens and providing pigmentation to flowers, fruit, seeds and vegetative tissues (Agati &amp; Tattini, <span>2010</span>; Cheynier <i>et al</i>., <span>2013</span>; Landi <i>et al</i>., <span>2015</span>; Davies <i>et al</i>., <span>2018</span>). The flavonoid pathway commences with the production of chalcones by the polyketide synthase (PKS) enzyme CHALCONE SYNTHASE (CHS). The subsequent pathway steps lead to diverse, distinct flavonoid classes, including flavones, flavonols, isoflavonoids, aurones, auronidins, anthocyanins and proanthocyanidins (condensed tannin). The core biosynthesis genes for the major flavonoid classes have been extensively characterized across many plant species (Yonekura-Sakakibara <i>et al</i>., <span>2019</span>; Ferreyra <i>et al</i>., <span>2021</span>; Davies <i>et al</i>., <span>2022</span>). However, recent studies have brought to light possible important roles in flavonoid production for additional nonenzymatic proteins, the modes of action of which are generally not understood. The best studied is CHALCONE ISOMERASE-LIKE (CHIL), which is necessary for efficient flavonoid biosynthesis in diverse land plant lineages (Morita <i>et al</i>., <span>2014</span>; Berland <i>et al</i>., <span>2019</span>). CHIL can bind with and alter the specificity of CHS and at least some other PKS enzymes, notably STILBENE SYNTHASE (Waki <i>et al</i>., <span>2020</span>). As the PKSs direct substrate flow into the alternative phenylpropanoid pathway sections, such as flavonoids, stilbenes, dihydrochalcones and bibenzyls, CHIL acts at a key biosynthetic step where enzyme specificity and efficacy are particularly important.</p>\n<p>Relatively unexamined candidates for other nonenzymatic proteins involved in flavonoid biosynthesis are some members of the pathogenesis-related 10 (PR10) sub-class of pathogenesis-related proteins (PR proteins). Pathogenesis-related proteins represent diverse protein families, often with unknown functions, whose corresponding genes are induced in response to pathogen attacks, environmental stresses or certain physiological processes (van Loon, <span>1985</span>). Following identification of PR10 in parsley (PcPR10 of <i>Petroselinum crispum</i>; Somssich <i>et al</i>., <span>1986</span>) and as the major allergen present in birch pollen (Bet v1 of <i>Betula</i> spp.; Breiteneder <i>et al</i>., <span>1989</span>), PR10 genes have been identified in various gymnosperm and angiosperm species (Liu &amp; Ekramoddoullah, <span>2006</span>). Yet, no conserved role for PR10 family members has been identified, although they have commonly been linked to defence against pathogens (Park <i>et al</i>., <span>2004</span>; Andrade <i>et al</i>., <span>2010</span>; Fan <i>et al</i>., <span>2015</span>; Longsaward <i>et al</i>., <span>2023</span>). An association with specialized metabolite pathways has also often been noted, including for flavonoids (Hjernø <i>et al</i>., <span>2006</span>; Muñoz <i>et al</i>., <span>2010</span>), sporopollenin (Huang <i>et al</i>., <span>1997</span>), benzylisoquinoline alkaloids (Hagel &amp; Facchini, <span>2013</span>), Amaryllidaceae alkaloids (Singh <i>et al</i>., <span>2018</span>), iridoids (Lichman <i>et al</i>., <span>2020</span>) and thebaine (Chen <i>et al</i>., <span>2018</span>).</p>\n<p>The mode of action of PR10 proteins is unresolved. Some PR10 proteins have been found to directly catalyse specialized metabolite biosynthetic reactions (Hagel &amp; Facchini, <span>2013</span>; Chen <i>et al</i>., <span>2018</span>; Singh <i>et al</i>., <span>2018</span>), while other PR10 proteins may guide pathway stereochemistry and product selectivity (Lichman <i>et al</i>., <span>2020</span>). However, the ability to bind small metabolites may be key to all PR10 functions. Pathogenesis-related 10 proteins have a compact, stable conformation, characterised by a seven-stranded antiparallel β-sheet wrapped around an α-helix, along with two additional short helices (Hoffmann-Sommergruber <i>et al</i>., <span>1997</span>; Wen <i>et al</i>., <span>1997</span>; Handschuh <i>et al</i>., <span>2007</span>; Lebel <i>et al</i>., <span>2010</span>; Fernandes <i>et al</i>., <span>2013</span>). These elements collectively form a hydrophobic cavity that is the site of ligand binding (Aglas <i>et al</i>., <span>2020</span>; Morris <i>et al</i>., <span>2021</span>). A glycine-rich loop L4 is preserved even in distant homologues among seed plants, and thus recognised as a signature motif (Fernandes <i>et al</i>., <span>2013</span>). A diverse array of molecules has been shown to be able to be bound by different PR10 proteins, ranging from invading viral RNAs to varied specialized metabolites (Park <i>et al</i>., <span>2004</span>; Chadha &amp; Das, <span>2006</span>; Sliwiak <i>et al</i>., <span>2016</span>; Aglas <i>et al</i>., <span>2020</span>). Notably, the PR10 of strawberry (Fra a of <i>Fragaria</i> × <i>ananassa</i>) can bind flavonoids, including quercetin-3-<i>O</i>-glucuronide, myricetin and (+)-catechin (Casañal <i>et al</i>., <span>2013</span>). Additionally, <i>Fra a</i> genes are downregulated in an anthocyanin-lacking strawberry line (Hjernø <i>et al</i>., <span>2006</span>), and transient RNAi-mediated silencing of the <i>Fra a</i> genes in strawberry fruits reduced amounts of anthocyanins and upstream metabolites and the transcript abundance for PHENYLALANINE AMMONIA LYASE (PAL) and CHS. Based on the available data, there are various proposals for how PR10 might contribute to flavonoid biosynthesis: chemical chaperones assist intercellular transportation of compounds (Casañal <i>et al</i>., <span>2013</span>), participation in multi-protein flavonoid biosynthetic complexes (metabolons) to restrict diffusion and protect unstable substrates (Morris <i>et al</i>., <span>2021</span>), finely adjusting metabolic flux by differential binding of intermediates and channelling them between enzymes (Casañal <i>et al</i>., <span>2013</span>) and transcriptional regulation of flavonoid biosynthesis genes (Muñoz <i>et al</i>., <span>2010</span>). Thus, the mode of action of PR10 in the flavonoid pathway remains equivocal.</p>\n<p>The models used for elucidating the genetics and biochemistry of the flavonoid pathway have traditionally been a relatively small number of angiosperm species. However, recently <i>Marchantia polymorpha</i> (hereafter, Marchantia), a member of the liverwort lineage of bryophytes, has emerged as a powerful system for addressing questions of flavonoid genetics and for identifying which aspects of flavonoid biosynthesis and regulation are conserved across land plants (Albert <i>et al</i>., <span>2018</span>; Clayton <i>et al</i>., <span>2018</span>; Kubo <i>et al</i>., <span>2018</span>; Berland <i>et al</i>., <span>2019</span>; Bowman <i>et al</i>., <span>2022</span>; Zhu <i>et al</i>., <span>2023</span>; Zhou <i>et al</i>., <span>2024</span>). The two main flavonoid classes produced in Marchantia are the colorless flavones, which assist with tolerance of UVB light exposure, and the red pigment auronidin (Albert <i>et al</i>., <span>2018</span>; Clayton <i>et al</i>., <span>2018</span>; Kubo <i>et al</i>., <span>2018</span>; Berland <i>et al</i>., <span>2019</span>). The phenylpropanoid enzymes that convert phenylalanine to the flavonoid precursor <i>p</i>-coumaroyl CoA are conserved across all land plants, including Marchantia, being PAL, CINNAMATE 4-HYDROXYLASE (C4H) and 4-COUMAROYL CoA LIGASE (4CL). From there, the pathway in Marchantia branches into two trajectories: one leading to flavonoids and the other to bibenzyls, a group of antimicrobial compounds for which &gt; 125 different structures have been reported from liverworts (Asakawa <i>et al</i>., <span>2022</span>). The initial bibenzyl-specific step is catalysed by the PKS STILBENECARBOXYLATE SYNTHASE and a POLYKETIDE REDUCTASE. For flavonoids, the naringenin chalcone (NC) formed by CHS/CHIL is subsequently transformed into flavones by the actions of CHALCONE ISOMERASE (CHI) and FLAVONE SYNTHASE (FNS) or auronidins by AUREUSIDIN SYNTHASE (AUS) and uncharacterized enzymes (Berland <i>et al</i>., <span>2019</span>; Davies <i>et al</i>., <span>2020</span>) (Fig. 1). The biosynthesis of auronidin is transcriptionally activated by the R2R3MYB transcription factor MpMYB14 (Albert <i>et al</i>., <span>2018</span>; Kubo <i>et al</i>., <span>2018</span>).</p>\n<figure><picture>\n<source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/831e5ed2-e6a1-4bbb-9085-edc8bcce7de6/nph70194-fig-0001-m.jpg\"/><img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/831e5ed2-e6a1-4bbb-9085-edc8bcce7de6/nph70194-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/682cf123-c40c-4aab-a664-3e9c1e253760/nph70194-fig-0001-m.png\" title=\"Details are in the caption following the image\"/></picture><figcaption>\n<div><strong>Fig. 1<span style=\"font-weight:normal\"></span></strong><div>Open in figure viewer<i aria-hidden=\"true\"></i><span>PowerPoint</span></div>\n</div>\n<div>Schematic of the phenylpropanoid biosynthetic pathway in <i>Marchantia polymorpha</i>. 4CL, 4-COUMAROYL COA LIGASE; AUS, AUREUSIDIN SYNTHASE; C4H, CINNAMATE 4-HYDROXYLASE; CHI, CHALCONE ISOMERASE; CHIL, CHALCONE ISOMERASE-LIKE; CHS, CHALCONE SYNTHASE; DBR, double bond reductase; FNS, FLAVONE SYNTHASE; PAL, PHENYLALANINE AMMONIA LYASE; PKR, POLYKETIDE REDUCTASE; STCS, STILBENECARBOXYLATE SYNTHASE.</div>\n</figcaption>\n</figure>\n<p>Previous studies on auronidin biosynthesis in Marchantia identified Mp<i>PATHOGENESIS-RELATED10.5</i> (Mp<i>PR10.5/Mp8g00860</i>) as being tightly associated with Mp<i>MYB14</i> expression. <i>MpPR10.5</i> transcript levels increased over 30-fold in <i>35S:MYB14</i> plants and decreased over sevenfold in <i>Mpmyb14</i> mutants compared to wild-type(WT) (Albert <i>et al</i>., <span>2018</span>; Berland <i>et al</i>., <span>2019</span>). Furthermore, in an independent study conducted by Kubo <i>et al</i>. (<span>2018</span>), Mp<i>PR10.5</i> was significantly upregulated (&gt; 50-fold) in their Mp<i>MYB14</i> overexpression line, compared to the WT control (full dataset available in the Marpolbase Expression database: https://mbex.marchantia.info/diffexp). This suggested that MpPR10.5 may have a role in auronidin biosynthesis and that Marchantia could be an excellent model system to elucidate the mode of action of PR10 proteins in the flavonoid pathway.</p>\n<p>In this study, using a multidisciplinary combination of reverse genetics, RNAseq analysis and <i>in vitro</i> protein assays, we establish that MpPR10.5 promotes flavonoid biosynthesis in Marchantia, identify a novel feedback regulation mechanism that downregulates phenylpropanoid pathway gene expression and propose a mode of action through binding of MpPR10.5 protein to specific flavonoid pathway intermediates.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"26 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70194","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Flavonoid biosynthesis, a branch of the phenylpropanoid pathway, is a central specialised metabolite pathway of land plants. Flavonoids are key to how plants interact with the terrestrial environment, helping in tolerance of diverse abiotic stresses and attacks from pests and pathogens and providing pigmentation to flowers, fruit, seeds and vegetative tissues (Agati & Tattini, 2010; Cheynier et al., 2013; Landi et al., 2015; Davies et al., 2018). The flavonoid pathway commences with the production of chalcones by the polyketide synthase (PKS) enzyme CHALCONE SYNTHASE (CHS). The subsequent pathway steps lead to diverse, distinct flavonoid classes, including flavones, flavonols, isoflavonoids, aurones, auronidins, anthocyanins and proanthocyanidins (condensed tannin). The core biosynthesis genes for the major flavonoid classes have been extensively characterized across many plant species (Yonekura-Sakakibara et al., 2019; Ferreyra et al., 2021; Davies et al., 2022). However, recent studies have brought to light possible important roles in flavonoid production for additional nonenzymatic proteins, the modes of action of which are generally not understood. The best studied is CHALCONE ISOMERASE-LIKE (CHIL), which is necessary for efficient flavonoid biosynthesis in diverse land plant lineages (Morita et al., 2014; Berland et al., 2019). CHIL can bind with and alter the specificity of CHS and at least some other PKS enzymes, notably STILBENE SYNTHASE (Waki et al., 2020). As the PKSs direct substrate flow into the alternative phenylpropanoid pathway sections, such as flavonoids, stilbenes, dihydrochalcones and bibenzyls, CHIL acts at a key biosynthetic step where enzyme specificity and efficacy are particularly important.

Relatively unexamined candidates for other nonenzymatic proteins involved in flavonoid biosynthesis are some members of the pathogenesis-related 10 (PR10) sub-class of pathogenesis-related proteins (PR proteins). Pathogenesis-related proteins represent diverse protein families, often with unknown functions, whose corresponding genes are induced in response to pathogen attacks, environmental stresses or certain physiological processes (van Loon, 1985). Following identification of PR10 in parsley (PcPR10 of Petroselinum crispum; Somssich et al., 1986) and as the major allergen present in birch pollen (Bet v1 of Betula spp.; Breiteneder et al., 1989), PR10 genes have been identified in various gymnosperm and angiosperm species (Liu & Ekramoddoullah, 2006). Yet, no conserved role for PR10 family members has been identified, although they have commonly been linked to defence against pathogens (Park et al., 2004; Andrade et al., 2010; Fan et al., 2015; Longsaward et al., 2023). An association with specialized metabolite pathways has also often been noted, including for flavonoids (Hjernø et al., 2006; Muñoz et al., 2010), sporopollenin (Huang et al., 1997), benzylisoquinoline alkaloids (Hagel & Facchini, 2013), Amaryllidaceae alkaloids (Singh et al., 2018), iridoids (Lichman et al., 2020) and thebaine (Chen et al., 2018).

The mode of action of PR10 proteins is unresolved. Some PR10 proteins have been found to directly catalyse specialized metabolite biosynthetic reactions (Hagel & Facchini, 2013; Chen et al., 2018; Singh et al., 2018), while other PR10 proteins may guide pathway stereochemistry and product selectivity (Lichman et al., 2020). However, the ability to bind small metabolites may be key to all PR10 functions. Pathogenesis-related 10 proteins have a compact, stable conformation, characterised by a seven-stranded antiparallel β-sheet wrapped around an α-helix, along with two additional short helices (Hoffmann-Sommergruber et al., 1997; Wen et al., 1997; Handschuh et al., 2007; Lebel et al., 2010; Fernandes et al., 2013). These elements collectively form a hydrophobic cavity that is the site of ligand binding (Aglas et al., 2020; Morris et al., 2021). A glycine-rich loop L4 is preserved even in distant homologues among seed plants, and thus recognised as a signature motif (Fernandes et al., 2013). A diverse array of molecules has been shown to be able to be bound by different PR10 proteins, ranging from invading viral RNAs to varied specialized metabolites (Park et al., 2004; Chadha & Das, 2006; Sliwiak et al., 2016; Aglas et al., 2020). Notably, the PR10 of strawberry (Fra a of Fragaria × ananassa) can bind flavonoids, including quercetin-3-O-glucuronide, myricetin and (+)-catechin (Casañal et al., 2013). Additionally, Fra a genes are downregulated in an anthocyanin-lacking strawberry line (Hjernø et al., 2006), and transient RNAi-mediated silencing of the Fra a genes in strawberry fruits reduced amounts of anthocyanins and upstream metabolites and the transcript abundance for PHENYLALANINE AMMONIA LYASE (PAL) and CHS. Based on the available data, there are various proposals for how PR10 might contribute to flavonoid biosynthesis: chemical chaperones assist intercellular transportation of compounds (Casañal et al., 2013), participation in multi-protein flavonoid biosynthetic complexes (metabolons) to restrict diffusion and protect unstable substrates (Morris et al., 2021), finely adjusting metabolic flux by differential binding of intermediates and channelling them between enzymes (Casañal et al., 2013) and transcriptional regulation of flavonoid biosynthesis genes (Muñoz et al., 2010). Thus, the mode of action of PR10 in the flavonoid pathway remains equivocal.

The models used for elucidating the genetics and biochemistry of the flavonoid pathway have traditionally been a relatively small number of angiosperm species. However, recently Marchantia polymorpha (hereafter, Marchantia), a member of the liverwort lineage of bryophytes, has emerged as a powerful system for addressing questions of flavonoid genetics and for identifying which aspects of flavonoid biosynthesis and regulation are conserved across land plants (Albert et al., 2018; Clayton et al., 2018; Kubo et al., 2018; Berland et al., 2019; Bowman et al., 2022; Zhu et al., 2023; Zhou et al., 2024). The two main flavonoid classes produced in Marchantia are the colorless flavones, which assist with tolerance of UVB light exposure, and the red pigment auronidin (Albert et al., 2018; Clayton et al., 2018; Kubo et al., 2018; Berland et al., 2019). The phenylpropanoid enzymes that convert phenylalanine to the flavonoid precursor p-coumaroyl CoA are conserved across all land plants, including Marchantia, being PAL, CINNAMATE 4-HYDROXYLASE (C4H) and 4-COUMAROYL CoA LIGASE (4CL). From there, the pathway in Marchantia branches into two trajectories: one leading to flavonoids and the other to bibenzyls, a group of antimicrobial compounds for which > 125 different structures have been reported from liverworts (Asakawa et al., 2022). The initial bibenzyl-specific step is catalysed by the PKS STILBENECARBOXYLATE SYNTHASE and a POLYKETIDE REDUCTASE. For flavonoids, the naringenin chalcone (NC) formed by CHS/CHIL is subsequently transformed into flavones by the actions of CHALCONE ISOMERASE (CHI) and FLAVONE SYNTHASE (FNS) or auronidins by AUREUSIDIN SYNTHASE (AUS) and uncharacterized enzymes (Berland et al., 2019; Davies et al., 2020) (Fig. 1). The biosynthesis of auronidin is transcriptionally activated by the R2R3MYB transcription factor MpMYB14 (Albert et al., 2018; Kubo et al., 2018).

Abstract Image
Fig. 1
Open in figure viewerPowerPoint
Schematic of the phenylpropanoid biosynthetic pathway in Marchantia polymorpha. 4CL, 4-COUMAROYL COA LIGASE; AUS, AUREUSIDIN SYNTHASE; C4H, CINNAMATE 4-HYDROXYLASE; CHI, CHALCONE ISOMERASE; CHIL, CHALCONE ISOMERASE-LIKE; CHS, CHALCONE SYNTHASE; DBR, double bond reductase; FNS, FLAVONE SYNTHASE; PAL, PHENYLALANINE AMMONIA LYASE; PKR, POLYKETIDE REDUCTASE; STCS, STILBENECARBOXYLATE SYNTHASE.

Previous studies on auronidin biosynthesis in Marchantia identified MpPATHOGENESIS-RELATED10.5 (MpPR10.5/Mp8g00860) as being tightly associated with MpMYB14 expression. MpPR10.5 transcript levels increased over 30-fold in 35S:MYB14 plants and decreased over sevenfold in Mpmyb14 mutants compared to wild-type(WT) (Albert et al., 2018; Berland et al., 2019). Furthermore, in an independent study conducted by Kubo et al. (2018), MpPR10.5 was significantly upregulated (> 50-fold) in their MpMYB14 overexpression line, compared to the WT control (full dataset available in the Marpolbase Expression database: https://mbex.marchantia.info/diffexp). This suggested that MpPR10.5 may have a role in auronidin biosynthesis and that Marchantia could be an excellent model system to elucidate the mode of action of PR10 proteins in the flavonoid pathway.

In this study, using a multidisciplinary combination of reverse genetics, RNAseq analysis and in vitro protein assays, we establish that MpPR10.5 promotes flavonoid biosynthesis in Marchantia, identify a novel feedback regulation mechanism that downregulates phenylpropanoid pathway gene expression and propose a mode of action through binding of MpPR10.5 protein to specific flavonoid pathway intermediates.

一种与发病机制相关的10蛋白对柚皮素查尔酮的保护促进了多形地黄酮类化合物的生物合成
类黄酮生物合成是陆生植物的主要代谢途径,是苯丙素途径的一个分支。黄酮类化合物是植物如何与陆地环境相互作用的关键,有助于抵抗各种非生物胁迫和害虫和病原体的攻击,并为花、水果、种子和营养组织提供色素沉着(Agati &amp;Tattini, 2010;Cheynier et al., 2013;Landi et al., 2015;Davies et al., 2018)。黄酮类化合物途径始于聚酮合成酶(PKS) CHALCONE synthase (CHS)生成查尔酮。随后的途径步骤导致不同的,不同的类黄酮类,包括黄酮,黄酮醇,异黄酮,金酮,金花青素,花青素和原花青素(浓缩单宁)。主要类黄酮的核心生物合成基因已经在许多植物物种中被广泛表征(Yonekura-Sakakibara et al., 2019;Ferreyra等人,2021;Davies et al., 2022)。然而,最近的研究已经揭示了额外的非酶蛋白在类黄酮生产中的可能重要作用,其作用模式通常不为人所知。研究最多的是CHALCONE ISOMERASE-LIKE (CHIL),它是多种陆地植物谱系中有效合成类黄酮所必需的(Morita et al., 2014;Berland et al., 2019)。CHIL可以结合并改变CHS和至少一些其他PKS酶的特异性,特别是STILBENE SYNTHASE (Waki et al., 2020)。由于pks直接底物流入替代的苯丙素途径部分,如类黄酮、二苯乙烯、二氢查尔酮和联苯,CHIL在关键的生物合成步骤中起作用,其中酶的特异性和功效尤为重要。参与类黄酮生物合成的其他非酶蛋白的候选蛋白是一些致病相关蛋白(PR蛋白)的致病相关10 (PR10)亚类成员。发病相关蛋白是不同的蛋白家族,通常功能未知,其对应的基因是在对病原体攻击、环境压力或某些生理过程的反应中被诱导的(van Loon, 1985)。欧芹PR10的鉴定(Petroselinum crispum的PcPR10)Somssich et al., 1986)和桦树花粉中的主要过敏原(Betula spp.;Breiteneder et al., 1989), PR10基因已在各种裸子植物和被子植物物种中被鉴定出来(Liu &amp;Ekramoddoullah, 2006)。然而,没有发现PR10家族成员的保守作用,尽管它们通常与防御病原体有关(Park等人,2004;Andrade et al., 2010;Fan et al., 2015;Longsaward et al., 2023)。与特殊代谢物途径的关联也经常被注意到,包括类黄酮(hjernoet al., 2006;Muñoz et al., 2010),孢粉素(Huang et al., 1997),苯基异喹啉生物碱(Hagel &amp;Facchini, 2013), Amaryllidaceae生物碱(Singh等人,2018),环烯醚萜(Lichman等人,2020)和贝恩(Chen等人,2018)。PR10蛋白的作用方式尚不清楚。一些PR10蛋白被发现可以直接催化特殊的代谢物生物合成反应(Hagel &amp;Facchini, 2013;Chen et al., 2018;Singh等人,2018),而其他PR10蛋白可能指导通路立体化学和产物选择性(Lichman等人,2020)。然而,结合小代谢物的能力可能是PR10所有功能的关键。与发病机制相关的蛋白质具有紧凑、稳定的构象,其特征是七股反平行的β-片绕着α-螺旋,以及另外两个短螺旋(Hoffmann-Sommergruber等人,1997;Wen et al., 1997;Handschuh et al., 2007;Lebel et al., 2010;Fernandes et al., 2013)。这些元素共同形成一个疏水腔,是配体结合的位点(Aglas et al., 2020;Morris et al., 2021)。富含甘氨酸的环L4即使在种子植物的遥远同源物中也被保留下来,因此被认为是一个标志性的基序(Fernandes et al., 2013)。各种各样的分子已被证明能够与不同的PR10蛋白结合,从入侵的病毒rna到各种专门的代谢物(Park等人,2004;查达,达斯,2006;Sliwiak et al., 2016;Aglas et al., 2020)。值得注意的是,草莓的PR10 (Fragaria x ananassa的Fra)可以结合黄酮类化合物,包括槲皮素-3- o -葡糖苷、杨梅素和(+)-儿茶素(Casañal et al., 2013)。此外,Fra基因在缺乏花青素的草莓品系中被下调(hjernoet al., 2006),草莓果实中Fra基因的短暂rnai介导的沉默减少了花青素和上游代谢物的数量以及苯丙氨酸氨裂解酶(PAL)和CHS的转录物丰度。 根据现有的数据,有各种关于PR10如何促进类黄酮生物合成的建议:化学伴侣协助化合物的细胞间运输(Casañal等人,2013),参与多蛋白类黄酮生物合成复合物(代谢)以限制扩散并保护不稳定的底物(Morris等人,2021),通过中间体的差异结合并在酶之间引导它们精细调节代谢通量(Casañal等人,2013)和类黄酮生物合成基因的转录调控(Muñoz等人,2010)。因此,PR10在类黄酮途径中的作用方式仍然是模棱两可的。用于阐明黄酮类化合物途径的遗传和生物化学模型传统上是相对少数的被子植物物种。然而,最近,苔藓植物中苔类植物谱系的成员多态Marchantia(以下简称Marchantia)已经成为解决类黄酮遗传问题和确定类黄酮生物合成和调控哪些方面在陆地植物中保守的强大系统(Albert等人,2018;Clayton等人,2018;Kubo et al., 2018;Berland等人,2019;Bowman et al., 2022;Zhu等,2023;周等人,2024)。Marchantia中产生的两种主要类黄酮是无色黄酮,有助于耐受UVB光照射,以及红色色素auronidin (Albert et al., 2018;Clayton等人,2018;Kubo et al., 2018;Berland et al., 2019)。将苯丙氨酸转化为类黄酮前体对香豆醇辅酶a的苯丙类酶在所有陆生植物中都是保守的,包括地香属植物,包括PAL、肉桂酸4-羟化酶(C4H)和4-香豆醇辅酶a连接酶(4CL)。从那里,Marchantia的途径分支成两条轨迹:一条通向类黄酮,另一条通向联苯,这是一组抗菌化合物,据报道从苔类植物中发现了125种不同的结构(Asakawa et al., 2022)。最初的联苯特异性步骤由PKS二苯乙烯羧酸合成酶和聚酮还原酶催化。对于黄酮类化合物,CHS/CHIL形成的柚皮素查尔酮(NC)随后通过查尔酮异构酶(CHI)和黄酮合成酶(FNS)的作用转化为黄酮类化合物,或通过AUREUSIDIN SYNTHASE (AUS)和未表征酶转化为金桃红素(Berland et al., 2019;Davies et al., 2020)(图1)。auronidin的生物合成由R2R3MYB转录因子MpMYB14转录激活(Albert et al., 2018;Kubo et al., 2018)。1 .打开图形查看器powerpoint多形地药苯丙素生物合成途径示意图。4cl, 4-香豆酰辅酶;Aus,金黄色葡萄素合成酶;C4h,肉桂酸4-羟化酶;查尔酮异构酶;查尔酮异构酶样;查尔酮合成酶;DBR:双键还原酶;Fns,黄酮合成酶;Pal,苯丙氨酸解氨酶;Pkr,聚酮还原酶;Stcs,二苯乙烯羧酸合成酶。先前对桃金酸苷生物合成的研究发现,mpppathgenesis - related10.5 (MpPR10.5/Mp8g00860)与MpMYB14的表达密切相关。与野生型(WT)相比,35S:MYB14植株的MpPR10.5转录物水平增加了30倍以上,而Mpmyb14突变体的MpPR10.5转录物水平下降了7倍以上(Albert等人,2018;Berland et al., 2019)。此外,在Kubo等人(2018)进行的一项独立研究中,与WT对照相比,MpMYB14过表达系的MpPR10.5显著上调(&gt; 50倍)(Marpolbase Expression数据库中的完整数据集:https://mbex.marchantia.info/diffexp)。这表明MpPR10.5可能在auronidin的生物合成中起作用,Marchantia可能是阐明PR10蛋白在类黄酮途径中的作用方式的一个很好的模型系统。本研究采用多学科结合的方法,结合反向遗传学、RNAseq分析和体外蛋白检测,确立了MpPR10.5促进马头草类黄酮生物合成,确定了一种下调苯丙素途径基因表达的反馈调控机制,并提出了MpPR10.5蛋白与特定类黄酮途径中间体结合的作用模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信