Entropy-Driven Stabilization of Noble Metal Single Atoms: Advancing Ammonia Synthesis and Energy Output in Zinc-Nitrate Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hele Guo, Zhongyuan Guo, Guohao Xue, Haifeng Wang, Jiaming Gong, Kaibin Chu, Jingjing Qin, Yawen Guan, Hongliang Dong, Yujie Chen, Yue-E Miao, Chao Zhang, Hezhou Liu, Tianxi Liu, Johan Hofkens, Feili Lai
{"title":"Entropy-Driven Stabilization of Noble Metal Single Atoms: Advancing Ammonia Synthesis and Energy Output in Zinc-Nitrate Batteries","authors":"Hele Guo, Zhongyuan Guo, Guohao Xue, Haifeng Wang, Jiaming Gong, Kaibin Chu, Jingjing Qin, Yawen Guan, Hongliang Dong, Yujie Chen, Yue-E Miao, Chao Zhang, Hezhou Liu, Tianxi Liu, Johan Hofkens, Feili Lai","doi":"10.1002/adma.202500224","DOIUrl":null,"url":null,"abstract":"Noble metal single atoms (NMSA) offer exceptional atom utilization and catalytic activity but face challenges like limited stability, low atomic loading, and complex synthesis. This study presents an innovative entropy-driven strategy to stabilize Ru single atoms (SA) on a (CePrYZrHf)O<sub>x</sub> high-entropy oxide substrate (Ru<sub>α%</sub>-HEO). Due to their defect-rich structure and significant lattice distortion, HEO substrates can accommodate and stabilize more Ru SA than traditional low-entropy oxides (LEO) like CeO<sub>2</sub>. This strategy is also effective for achieving high loadings of other NMSAs, such as Pd and Pt. Ru<sub>3%</sub>-HEO, as an electrocatalyst for nitrate reduction, achieves a high ammonia yield (5.79 mg h<sup>−1</sup> mg<sub>cat.</sub><sup>−1</sup>) and a Faradaic efficiency (FE) of 91.3%. Density functional theory (DFT) calculations reveal that Ru<sub>3%</sub>-HEO exhibits favorable thermodynamics for nitrate reduction, with a lower energy barrier for the rate-determining step of first hydrogenation (<sup>*</sup>NO + H<sup>+</sup> + e⁻ → <sup>*</sup>NOH) and stronger intermediates adsorption compared to RuO<sub>2</sub>, enhancing its catalytic efficiency. As a cathode material in a zinc-nitrate battery, Ru<sub>3%</sub>-HEO demonstrates a high NH<sub>3</sub> yield rate (1.11 mg h<sup>−1</sup> cm<sup>−2</sup>) and FE value (93.4%). This study provides an efficient strategy to produce stable and high-loading SA using high-entropy materials, showcasing their broad applicability in advanced electrocatalysis.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"8 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202500224","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Noble metal single atoms (NMSA) offer exceptional atom utilization and catalytic activity but face challenges like limited stability, low atomic loading, and complex synthesis. This study presents an innovative entropy-driven strategy to stabilize Ru single atoms (SA) on a (CePrYZrHf)Ox high-entropy oxide substrate (Ruα%-HEO). Due to their defect-rich structure and significant lattice distortion, HEO substrates can accommodate and stabilize more Ru SA than traditional low-entropy oxides (LEO) like CeO2. This strategy is also effective for achieving high loadings of other NMSAs, such as Pd and Pt. Ru3%-HEO, as an electrocatalyst for nitrate reduction, achieves a high ammonia yield (5.79 mg h−1 mgcat.−1) and a Faradaic efficiency (FE) of 91.3%. Density functional theory (DFT) calculations reveal that Ru3%-HEO exhibits favorable thermodynamics for nitrate reduction, with a lower energy barrier for the rate-determining step of first hydrogenation (*NO + H+ + e⁻ → *NOH) and stronger intermediates adsorption compared to RuO2, enhancing its catalytic efficiency. As a cathode material in a zinc-nitrate battery, Ru3%-HEO demonstrates a high NH3 yield rate (1.11 mg h−1 cm−2) and FE value (93.4%). This study provides an efficient strategy to produce stable and high-loading SA using high-entropy materials, showcasing their broad applicability in advanced electrocatalysis.

Abstract Image

贵金属单原子的熵驱动稳定:推进氨合成和硝酸锌电池的能量输出
贵金属单原子(NMSA)具有优异的原子利用率和催化活性,但面临稳定性有限、原子负载低和合成复杂等挑战。本研究提出了一种创新的熵驱动策略,在(CePrYZrHf)Ox高熵氧化物底物(Ruα%-HEO)上稳定Ru单原子(SA)。由于HEO衬底具有丰富的缺陷结构和显著的晶格畸变,与传统的低熵氧化物(如CeO2)相比,HEO衬底可以容纳和稳定更多的Ru SA。这一策略对于其他NMSAs(如Pd和Pt)的高负载也是有效的。Ru3%-HEO作为硝酸还原的电催化剂,获得了高氨收率(5.79 mg h - 1 mgcat. - 1)和91.3%的法拉第效率(FE)。密度泛函数理论(DFT)计算表明,Ru3%-HEO具有良好的硝酸盐还原热力学,与RuO2相比,Ru3%-HEO具有较低的第一加氢速率决定步骤的能势(*NO + H+ + e⁻→*NOH)和较强的中间产物吸附,提高了其催化效率。作为硝酸锌电池的正极材料,Ru3%-HEO具有较高的NH3产率(1.11 mg h−1 cm−2)和FE值(93.4%)。该研究提供了一种利用高熵材料制备稳定高负荷SA的有效策略,展示了其在先进电催化中的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信