Chemistry of Materials Underpinning Photoelectrochemical Solar Fuel Production

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zebulon G. Schichtl, O. Quinn Carvalho, Jeiwan Tan, Simran S. Saund, Debjit Ghoshal, Logan M. Wilder, Melissa K. Gish, Adam C. Nielander, Michaela Burke Stevens, Ann L. Greenaway
{"title":"Chemistry of Materials Underpinning Photoelectrochemical Solar Fuel Production","authors":"Zebulon G. Schichtl, O. Quinn Carvalho, Jeiwan Tan, Simran S. Saund, Debjit Ghoshal, Logan M. Wilder, Melissa K. Gish, Adam C. Nielander, Michaela Burke Stevens, Ann L. Greenaway","doi":"10.1021/acs.chemrev.4c00258","DOIUrl":null,"url":null,"abstract":"Since its inception, photoelectrochemistry has sought to power the generation of fuels, particularly hydrogen, using energy from sunlight. Efficient and durable photoelectrodes, however, remain elusive. Here we review the current state of the art, focusing our discussion on advances in photoelectrodes made in the past decade. We open by briefly discussing fundamental photoelectrochemical concepts and implications for photoelectrode function. We next review a broad range of semiconductor photoelectrodes broken down by material class (oxides, nitrides, chalcogenides, and mature photovoltaic semiconductors), identifying intrinsic properties and discussing their influence on performance. We then identify innovative in situ and operando techniques to directly probe the photoelectrode|electrolyte interface, enabling direct assessment of structure–property relationships for catalytic surfaces in active reaction environments. We close by considering more complex photoelectrochemical fuel-forming reactions (carbon dioxide and nitrogen reduction, as well as alternative oxidation reactions), where product selectivity imposes additional criteria on electrochemical driving force and photoelectrode architecture. By contextualizing recent literature within a fundamental framework, we seek to provide direction for continued progress toward achieving efficient and stable fuel-forming photoelectrodes.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"25 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00258","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Since its inception, photoelectrochemistry has sought to power the generation of fuels, particularly hydrogen, using energy from sunlight. Efficient and durable photoelectrodes, however, remain elusive. Here we review the current state of the art, focusing our discussion on advances in photoelectrodes made in the past decade. We open by briefly discussing fundamental photoelectrochemical concepts and implications for photoelectrode function. We next review a broad range of semiconductor photoelectrodes broken down by material class (oxides, nitrides, chalcogenides, and mature photovoltaic semiconductors), identifying intrinsic properties and discussing their influence on performance. We then identify innovative in situ and operando techniques to directly probe the photoelectrode|electrolyte interface, enabling direct assessment of structure–property relationships for catalytic surfaces in active reaction environments. We close by considering more complex photoelectrochemical fuel-forming reactions (carbon dioxide and nitrogen reduction, as well as alternative oxidation reactions), where product selectivity imposes additional criteria on electrochemical driving force and photoelectrode architecture. By contextualizing recent literature within a fundamental framework, we seek to provide direction for continued progress toward achieving efficient and stable fuel-forming photoelectrodes.

Abstract Image

支持光电化学太阳能燃料生产的材料化学
自成立以来,光电化学一直在寻求利用太阳能为燃料的产生提供动力,特别是氢。然而,高效和耐用的光电极仍然难以捉摸。在这里,我们回顾了当前的艺术状态,重点讨论了过去十年在光电极方面取得的进展。我们首先简要讨论基本的光电化学概念和光电极功能的含义。接下来,我们将根据材料类别(氧化物、氮化物、硫族化合物和成熟的光伏半导体)对半导体光电极进行广泛的回顾,确定其固有特性并讨论其对性能的影响。然后,我们确定了创新的原位和操作技术来直接探测光电极|电解质界面,从而能够直接评估活性反应环境中催化表面的结构-性质关系。最后,我们考虑了更复杂的光电化学燃料形成反应(二氧化碳和氮还原,以及替代氧化反应),其中产物选择性对电化学驱动力和光电极结构施加了额外的标准。通过在基本框架内对最近的文献进行背景分析,我们试图为实现高效稳定的燃料形成光电极的持续进展提供方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信