{"title":"Quantum and Classical Exceptional Points at the Nanoscale: Properties and Applications","authors":"Yu-Wei Lu, Wei Li, Xue-Hua Wang","doi":"10.1021/acsnano.4c15648","DOIUrl":null,"url":null,"abstract":"Exceptional points (EPs) are the spectral singularities and one of the central concepts of non-Hermitian physics, originating from the inevitable energy exchange with the surrounding environment. EPs exist in diverse physical systems and give rise to many counterintuitive effects, offering rich opportunities to control the dynamics and alter the properties of optical, electronic, acoustic, and mechanical states. The last two decades have witnessed the flourishing of non-Hermitian physics and associated applications related to coalesced eigenstates at EPs in a plethora of classical systems. While stemming from the quantum mechanism, the implementation of EPs in real quantum systems still faces challenges of tuning and stabilizing the systems at EPs, as well as the additional noises that hinder the observation of relevant phenomena. This review mainly focuses on summarizing the current efforts and opportunities offered by quantum EPs that result from or produce observable quantum effects. We introduce the concepts of Hamiltonian and Liouvillian EPs in the quantum regime and focus on their different properties in connection with quantum jumps and decoherence. We then provide a comprehensive discussion covering the theoretical and experimental advances in accessing EPs in diverse quantum systems and platforms. Special attention is paid to EP-based quantum-optics applications with state-of-art technologies. Finally, we present a discussion on the existing challenges of constructing quantum EPs at the nanoscale and an outlook on the fundamental science and applied technologies of quantum EPs, aiming to provide valuable insights for future research and building quantum devices with high performance and advanced functionalities.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"3 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15648","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Exceptional points (EPs) are the spectral singularities and one of the central concepts of non-Hermitian physics, originating from the inevitable energy exchange with the surrounding environment. EPs exist in diverse physical systems and give rise to many counterintuitive effects, offering rich opportunities to control the dynamics and alter the properties of optical, electronic, acoustic, and mechanical states. The last two decades have witnessed the flourishing of non-Hermitian physics and associated applications related to coalesced eigenstates at EPs in a plethora of classical systems. While stemming from the quantum mechanism, the implementation of EPs in real quantum systems still faces challenges of tuning and stabilizing the systems at EPs, as well as the additional noises that hinder the observation of relevant phenomena. This review mainly focuses on summarizing the current efforts and opportunities offered by quantum EPs that result from or produce observable quantum effects. We introduce the concepts of Hamiltonian and Liouvillian EPs in the quantum regime and focus on their different properties in connection with quantum jumps and decoherence. We then provide a comprehensive discussion covering the theoretical and experimental advances in accessing EPs in diverse quantum systems and platforms. Special attention is paid to EP-based quantum-optics applications with state-of-art technologies. Finally, we present a discussion on the existing challenges of constructing quantum EPs at the nanoscale and an outlook on the fundamental science and applied technologies of quantum EPs, aiming to provide valuable insights for future research and building quantum devices with high performance and advanced functionalities.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.