{"title":"Facile visible-light upcycling of diverse waste plastics using a single organocatalyst with minimal loadings","authors":"Sijing Zhang, Jingxiang Wang, Dewen Su, Xiao Xiao","doi":"10.1038/s41467-025-59540-5","DOIUrl":null,"url":null,"abstract":"<p>The escalating plastic waste crisis stems from limitations in conventional recycling methods, which are energy-intensive and produce lower-quality materials, leaving a substantial portion unrecycled. Here, we report a versatile organo-photocatalytic upcycling method employing an easily accessible phenothiazine derivative, <b>PTH-3CN</b>, to selectively deconstruct a wide array of commodity polymers—including polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyurethanes (PU), polycarbonates (PC), and other vinyl polymers—into valuable small molecules with minimal catalyst loading (as low as 500 ppm). Operating under mild conditions with visible light and ambient air, this protocol requires no additional acids or metals and adapts effectively to mixed and post-consumer plastic waste. Mechanistic analysis reveals that <b>PTH-3CN</b> serves as a precatalyst, decomposing into active triarylamine species that drive efficient degradation likely through a consecutive photoinduced electron transfer mechanism. This approach offers a promising, scalable route for sustainable plastic upcycling with broad applicability.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59540-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating plastic waste crisis stems from limitations in conventional recycling methods, which are energy-intensive and produce lower-quality materials, leaving a substantial portion unrecycled. Here, we report a versatile organo-photocatalytic upcycling method employing an easily accessible phenothiazine derivative, PTH-3CN, to selectively deconstruct a wide array of commodity polymers—including polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyurethanes (PU), polycarbonates (PC), and other vinyl polymers—into valuable small molecules with minimal catalyst loading (as low as 500 ppm). Operating under mild conditions with visible light and ambient air, this protocol requires no additional acids or metals and adapts effectively to mixed and post-consumer plastic waste. Mechanistic analysis reveals that PTH-3CN serves as a precatalyst, decomposing into active triarylamine species that drive efficient degradation likely through a consecutive photoinduced electron transfer mechanism. This approach offers a promising, scalable route for sustainable plastic upcycling with broad applicability.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.