{"title":"A potent protective bispecific nanobody targeting Herpes simplex virus gD reveals vulnerable epitope for neutralizing","authors":"Jing Hu, Haoyuan Tan, Meihua Wang, Shasha Deng, Mengyao Liu, Peiyi Zheng, Anmin Wang, Meng Guo, Jin Wang, Jiayin Li, Huanwen Qiu, Chengbing Yao, Zhongliang Zhu, Chaolu Hasi, Dongli Pan, Hongliang He, Chenghao Huang, Yuhua Shang, Shu Zhu, Tengchuan Jin","doi":"10.1038/s41467-025-58669-7","DOIUrl":null,"url":null,"abstract":"<p>Herpes simplex virus (HSV) causes significant health burden worldwide. Currently used antiviral drugs are effective but resistance can occur. Here, we report two high-affinity neutralizing nanobodies, namely Nb14 and Nb32, that target non-overlapping epitopes in HSV gD. Nb14 binds a neutralization epitope located in the N-A’ interloop, which prevents the interaction between gD and gH/gL during the second step of conformational changes during membrane fusion after virus attachment. The bispecific nanobody dimer (Nb14-32-Fc) exhibits high potency in vitro and in vivo. Mechanistically, Nb14-32-Fc neutralizes HSVs at both the pre-and post-attachment stages and prevents cell-to-cell spread in vitro. Administration of Nb14-32-Fc at low dosage of 1 mg/kg provides 100% protection in an HSV-1 infection male mouse model and an HSV-2 infection female mouse model. Our results demonstrate that Nb14-32-Fc could serve as a promising drug candidate for treatment of HSV infection, especially in the cases of antiviral drug resistance and severe herpes encephalitis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"35 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58669-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Herpes simplex virus (HSV) causes significant health burden worldwide. Currently used antiviral drugs are effective but resistance can occur. Here, we report two high-affinity neutralizing nanobodies, namely Nb14 and Nb32, that target non-overlapping epitopes in HSV gD. Nb14 binds a neutralization epitope located in the N-A’ interloop, which prevents the interaction between gD and gH/gL during the second step of conformational changes during membrane fusion after virus attachment. The bispecific nanobody dimer (Nb14-32-Fc) exhibits high potency in vitro and in vivo. Mechanistically, Nb14-32-Fc neutralizes HSVs at both the pre-and post-attachment stages and prevents cell-to-cell spread in vitro. Administration of Nb14-32-Fc at low dosage of 1 mg/kg provides 100% protection in an HSV-1 infection male mouse model and an HSV-2 infection female mouse model. Our results demonstrate that Nb14-32-Fc could serve as a promising drug candidate for treatment of HSV infection, especially in the cases of antiviral drug resistance and severe herpes encephalitis.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.