{"title":"Emergent hydrodynamic mode on SU(2) plaquette chains and quantum simulation","authors":"Francesco Turro, Xiaojun Yao","doi":"10.1103/physrevd.111.094502","DOIUrl":null,"url":null,"abstract":"We search for emergent hydrodynamic modes in real-time Hamiltonian dynamics of 2</a:mn>+</a:mo>1</a:mn></a:mrow></a:math>-dimensional SU(2) lattice gauge theory on a quasi-one-dimensional plaquette chain, by numerically computing symmetric correlation functions of energy densities on lattice sizes of about 20 with the local Hilbert space truncated at <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>j</c:mi><c:mi>max</c:mi></c:msub><c:mo>=</c:mo><c:mfrac><c:mn>1</c:mn><c:mn>2</c:mn></c:mfrac></c:math>. Because of the Umklapp processes, we only find a mode for energy diffusion. The symmetric correlator exhibits transport peak near zero frequency with a width approximately proportional to momentum squared at small momentum, when the system is fully quantum ergodic, as indicated by the eigenenergy level statistics. This transport peak leads to a power-law <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msup><e:mi>t</e:mi><e:mrow><e:mo>−</e:mo><e:mfrac><e:mn>1</e:mn><e:mn>2</e:mn></e:mfrac></e:mrow></e:msup></e:math> decay of the symmetric correlator at late time, also known as the long-time tail, as well as diffusionlike spreading in position space. We also introduce a quantum algorithm for computing the symmetric correlator on a quantum computer and find it gives results consistent with exact diagonalization when tested on the IBM emulator. Finally we discuss the future prospect of searching for the sound modes. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"29 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.094502","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We search for emergent hydrodynamic modes in real-time Hamiltonian dynamics of 2+1-dimensional SU(2) lattice gauge theory on a quasi-one-dimensional plaquette chain, by numerically computing symmetric correlation functions of energy densities on lattice sizes of about 20 with the local Hilbert space truncated at jmax=12. Because of the Umklapp processes, we only find a mode for energy diffusion. The symmetric correlator exhibits transport peak near zero frequency with a width approximately proportional to momentum squared at small momentum, when the system is fully quantum ergodic, as indicated by the eigenenergy level statistics. This transport peak leads to a power-law t−12 decay of the symmetric correlator at late time, also known as the long-time tail, as well as diffusionlike spreading in position space. We also introduce a quantum algorithm for computing the symmetric correlator on a quantum computer and find it gives results consistent with exact diagonalization when tested on the IBM emulator. Finally we discuss the future prospect of searching for the sound modes. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.