Emerging Microelectronic Materials by Design: Navigating Combinatorial Design Space with Scarce and Dispersed Data

IF 14 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hengrui Zhang, Alexandru B. Georgescu, Suraj Yerramilli, Christopher Karpovich, Daniel W. Apley, Elsa A. Olivetti, James M. Rondinelli, Wei Chen
{"title":"Emerging Microelectronic Materials by Design: Navigating Combinatorial Design Space with Scarce and Dispersed Data","authors":"Hengrui Zhang, Alexandru B. Georgescu, Suraj Yerramilli, Christopher Karpovich, Daniel W. Apley, Elsa A. Olivetti, James M. Rondinelli, Wei Chen","doi":"10.1021/accountsmr.5c00011","DOIUrl":null,"url":null,"abstract":"The increasing demands of sustainable energy, electronics, and biomedical applications call for next-generation functional materials with unprecedented properties. Of particular interest are emerging materials that display exceptional physical properties, making them promising candidates for energy-efficient microelectronic devices. As the conventional Edisonian approach becomes significantly outpaced by growing societal needs, emerging computational modeling and machine learning methods have been employed for the rational design of materials. However, the complex physical mechanisms, cost of first-principles calculations, and the dispersity and scarcity of data pose challenges to both physics-based and data-driven materials modeling. Moreover, the combinatorial composition–structure design space is high-dimensional and often disjoint, making design optimization nontrivial.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"10 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.5c00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demands of sustainable energy, electronics, and biomedical applications call for next-generation functional materials with unprecedented properties. Of particular interest are emerging materials that display exceptional physical properties, making them promising candidates for energy-efficient microelectronic devices. As the conventional Edisonian approach becomes significantly outpaced by growing societal needs, emerging computational modeling and machine learning methods have been employed for the rational design of materials. However, the complex physical mechanisms, cost of first-principles calculations, and the dispersity and scarcity of data pose challenges to both physics-based and data-driven materials modeling. Moreover, the combinatorial composition–structure design space is high-dimensional and often disjoint, making design optimization nontrivial.

Abstract Image

新兴的微电子材料设计:利用稀缺和分散的数据导航组合设计空间
可持续能源、电子和生物医学应用日益增长的需求要求下一代功能材料具有前所未有的性能。特别令人感兴趣的是显示出特殊物理特性的新兴材料,使它们成为节能微电子器件的有希望的候选者。随着传统的爱迪生方法被不断增长的社会需求大大超越,新兴的计算建模和机器学习方法已被用于材料的合理设计。然而,复杂的物理机制、第一性原理计算的成本以及数据的分散性和稀缺性对基于物理和数据驱动的材料建模都提出了挑战。此外,组合组合结构设计空间是高维的,往往不相交,使得设计优化变得非常困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信