Peiyang Chen, Kai Xiang Lee, Tim Colin Meiler, Yijie Shen
{"title":"Topological momentum skyrmions in Mie scattering fields","authors":"Peiyang Chen, Kai Xiang Lee, Tim Colin Meiler, Yijie Shen","doi":"10.1515/nanoph-2025-0071","DOIUrl":null,"url":null,"abstract":"How topologies play a role in light–matter interaction is of great interest in control and transfer of topologically-protected structures. These topological structures such as skyrmions and merons have not yet been found in canonical momentum fields, which are fundamental in mechanical transfer between optical and matter fields. Here, we reveal the universality of generating skyrmionic structures in the canonical momentum of light in multipole Mie scattering fields. We demonstrate the distinct topological stability of canonical momentum skyrmions and merons, and compare with well-studied Poynting vector and optical spin fields. The study of these fields allow for a clean and direct approach to measuring and quantifying energetic structures in optical fields, through observable radiation pressure. Our work lays the foundation for exploring new topologically nontrivial phenomena in optical forces, metamaterial design, and light–matter interaction.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"43 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0071","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
How topologies play a role in light–matter interaction is of great interest in control and transfer of topologically-protected structures. These topological structures such as skyrmions and merons have not yet been found in canonical momentum fields, which are fundamental in mechanical transfer between optical and matter fields. Here, we reveal the universality of generating skyrmionic structures in the canonical momentum of light in multipole Mie scattering fields. We demonstrate the distinct topological stability of canonical momentum skyrmions and merons, and compare with well-studied Poynting vector and optical spin fields. The study of these fields allow for a clean and direct approach to measuring and quantifying energetic structures in optical fields, through observable radiation pressure. Our work lays the foundation for exploring new topologically nontrivial phenomena in optical forces, metamaterial design, and light–matter interaction.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.