Synergistic effect of Bt (Cry1Ab + Vip3Aa) maize with emamectin benzoate and chlorantraniliprole against the fall armyworm, Spodoptera frugiperda

IF 4.1 1区 农林科学 Q1 ENTOMOLOGY
Wenhui Wang, Guodong Kang, Shuang Chen, Dandan Zhang, Shengyuan Zhao, Haitao Li, Xianming Yang, Yutao Xiao, Gemei Liang, Kongming Wu
{"title":"Synergistic effect of Bt (Cry1Ab + Vip3Aa) maize with emamectin benzoate and chlorantraniliprole against the fall armyworm, Spodoptera frugiperda","authors":"Wenhui Wang, Guodong Kang, Shuang Chen, Dandan Zhang, Shengyuan Zhao, Haitao Li, Xianming Yang, Yutao Xiao, Gemei Liang, Kongming Wu","doi":"10.1007/s10340-025-01897-z","DOIUrl":null,"url":null,"abstract":"<p>The invasion of the fall armyworm (FAW), <i>Spodoptera frugiperda</i> (J. E. Smith), has posed a serious threat to maize production in Africa and Asia. Chemical insecticides and Bt maize are the main means for FAW control, but the interaction between these two measures is also unclear. In this study, the susceptibility of the field population (Ezhou) fed on Bt maize insecticidal protein and the Vip3Aa-resistant population DH-R (206-fold) to emamectin benzoate (EB) and chlorantraniliprole (CAP) was determined by the topical application method. The results showed that the susceptibility of both populations to the two insecticides increased significantly. The mechanism is attributed to the inhibition of the activities of enzymes detoxification enzymes, including carboxylesterase (CarE), glutathione S-transferase (GSTs), and multifunctional oxidase (MFO). The corrected control effects of Bt (Cry1Ab + Vip3Aa) maize combined with EB or CAP against larvae were measured by a spraying method in the laboratory and field. The results showed that the combined use of Bt (Cry1Ab + Vip3Aa) maize and EB increased the corrected control effect by 22.70%-22.86% in the laboratory and 16.74% in the field. Similarly, the combined use of Bt (Cry1Ab + Vip3Aa) maize and CAP increased the corrected control effect by 54.92%-61.59% in the laboratory and 19.62% in the field. It is concluded that the Bt (Cry1Ab + Vip3Aa) maize and chemical insecticides (EB and CAP) have synergistic effects against FAW, providing a theoretical basis for integrating Bt maize with chemical insecticides to manage the FAW populations.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"110 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-025-01897-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The invasion of the fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), has posed a serious threat to maize production in Africa and Asia. Chemical insecticides and Bt maize are the main means for FAW control, but the interaction between these two measures is also unclear. In this study, the susceptibility of the field population (Ezhou) fed on Bt maize insecticidal protein and the Vip3Aa-resistant population DH-R (206-fold) to emamectin benzoate (EB) and chlorantraniliprole (CAP) was determined by the topical application method. The results showed that the susceptibility of both populations to the two insecticides increased significantly. The mechanism is attributed to the inhibition of the activities of enzymes detoxification enzymes, including carboxylesterase (CarE), glutathione S-transferase (GSTs), and multifunctional oxidase (MFO). The corrected control effects of Bt (Cry1Ab + Vip3Aa) maize combined with EB or CAP against larvae were measured by a spraying method in the laboratory and field. The results showed that the combined use of Bt (Cry1Ab + Vip3Aa) maize and EB increased the corrected control effect by 22.70%-22.86% in the laboratory and 16.74% in the field. Similarly, the combined use of Bt (Cry1Ab + Vip3Aa) maize and CAP increased the corrected control effect by 54.92%-61.59% in the laboratory and 19.62% in the field. It is concluded that the Bt (Cry1Ab + Vip3Aa) maize and chemical insecticides (EB and CAP) have synergistic effects against FAW, providing a theoretical basis for integrating Bt maize with chemical insecticides to manage the FAW populations.

Bt (Cry1Ab + Vip3Aa)玉米与苯甲酸埃维菌素和氯虫腈对秋粘虫的协同效应
秋粘虫(Spodoptera frugiperda, j.e. Smith)的入侵对非洲和亚洲的玉米生产构成了严重威胁。化学杀虫剂和Bt玉米是防治FAW的主要手段,但这两种措施之间的相互作用也不清楚。采用外用法测定了饲喂Bt玉米杀虫蛋白的鄂州田间种群和抗vip3aa种群h -r(206倍)对苯甲酸埃维菌素(EB)和氯虫腈(CAP)的敏感性。结果表明,2个种群对2种杀虫剂的敏感性均显著提高。其机制是抑制了解毒酶的活性,包括羧酸酯酶(CarE)、谷胱甘肽s -转移酶(GSTs)和多功能氧化酶(MFO)。采用室内和田间喷雾法测定了Bt (Cry1Ab + Vip3Aa)玉米与EB或CAP配用对幼虫的校正防治效果。结果表明,Bt (Cry1Ab + Vip3Aa)玉米与EB组合使用,室内校正防治效果提高22.70% ~ 22.86%,田间校正防治效果提高16.74%。同样,Bt (Cry1Ab + Vip3Aa)玉米与CAP联合使用,室内校正防治效果提高54.92% ~ 61.59%,田间校正防治效果提高19.62%。综上所述,Bt (Cry1Ab + Vip3Aa)玉米与化学杀虫剂(EB和CAP)对飞蛾有协同效应,为Bt玉米与化学杀虫剂联合防治飞蛾种群提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信