Hongmin Chen, Ye Xing, Chunyan Wan, Zheng Zhang, Zhu Shi, Yutao Liang, Chunlai Jin, Yating Chen, Xia Zhou, Junyu Xu, Louis J. Ptáček, Ying-Hui Fu, Guangsen Shi
{"title":"The SIK3-N783Y mutation is associated with the human natural short sleep trait","authors":"Hongmin Chen, Ye Xing, Chunyan Wan, Zheng Zhang, Zhu Shi, Yutao Liang, Chunlai Jin, Yating Chen, Xia Zhou, Junyu Xu, Louis J. Ptáček, Ying-Hui Fu, Guangsen Shi","doi":"10.1073/pnas.2500356122","DOIUrl":null,"url":null,"abstract":"Sleep is an essential component of our daily life. A mutation in human salt induced kinase 3 (hSIK3), which is critical for regulating sleep duration and depth in rodents, is associated with natural short sleep (NSS), a condition characterized by reduced daily sleep duration in human subjects. This NSS hSIK3-N783Y mutation results in diminished kinase activity in vitro. In a mouse model, the presence of the NSS hSIK3-N783Y mutation leads to a decrease in sleep time and an increase in electroencephalogram delta power. At the phosphoproteomic level, the SIK3-N783Y mutation induces substantial changes predominantly at synaptic sites. Bioinformatic analysis has identified several sleep-related kinase alterations triggered by the SIK3-N783Y mutation, including changes in protein kinase A and mitogen-activated protein kinase. These findings underscore the conserved function of SIK3 as a critical gene in human sleep regulation and provide insights into the kinase regulatory network governing sleep.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"98 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2500356122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep is an essential component of our daily life. A mutation in human salt induced kinase 3 (hSIK3), which is critical for regulating sleep duration and depth in rodents, is associated with natural short sleep (NSS), a condition characterized by reduced daily sleep duration in human subjects. This NSS hSIK3-N783Y mutation results in diminished kinase activity in vitro. In a mouse model, the presence of the NSS hSIK3-N783Y mutation leads to a decrease in sleep time and an increase in electroencephalogram delta power. At the phosphoproteomic level, the SIK3-N783Y mutation induces substantial changes predominantly at synaptic sites. Bioinformatic analysis has identified several sleep-related kinase alterations triggered by the SIK3-N783Y mutation, including changes in protein kinase A and mitogen-activated protein kinase. These findings underscore the conserved function of SIK3 as a critical gene in human sleep regulation and provide insights into the kinase regulatory network governing sleep.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.