{"title":"Bacterial community assembly processes mediate soil functioning under cadmium stress in the agroecosystem","authors":"Jiannan Jian , Shuang Feng , Yi Xu , Maohang Jia , Huayan Huang , Xin Zheng , Huakang Liu , Heng Xu","doi":"10.1016/j.jhazmat.2025.138496","DOIUrl":null,"url":null,"abstract":"<div><div>Elucidating the effects of community assembly processes on soil functioning represents a crucial challenge in theoretical ecology, particularly under cadmium (Cd) stress, where our understanding remains limited. In this study, we therefore used amplicon sequencing and a quantitative-PCR-based chip to analyze the changes in bacterial community characteristics, soil functioning and their interrelationships in agroecosystems under different levels of Cd stress. The results indicated that Cd stress led to a decline in community diversity (Z-score), network complexity and stability, an increase in species turnover, and a regulation of community structure. Cd stress significantly increased the relative importance of dispersal limitation and homogeneous selection, reducing community drift and rendering the community more deterministic. Finally, Cd stress significantly reduced soil functional potential (Z-score) and soil functional stability (Z-score), impairing soil carbon, nitrogen, phosphorus, and sulfur cycling. It is noteworthy that correlation and random forest analyses revealed significant effects of specific community assembly processes, including dispersal limitation, homogeneous selection, drift (and others), on changes in soil functional potential (Z-score). The results emphasize the pivotal role of community assembly processes in dictating soil functioning under Cd stress, thereby offering novel insights into the comprehension of microbial-driven mechanisms governing soil functioning.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"494 ","pages":"Article 138496"},"PeriodicalIF":12.2000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425014116","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating the effects of community assembly processes on soil functioning represents a crucial challenge in theoretical ecology, particularly under cadmium (Cd) stress, where our understanding remains limited. In this study, we therefore used amplicon sequencing and a quantitative-PCR-based chip to analyze the changes in bacterial community characteristics, soil functioning and their interrelationships in agroecosystems under different levels of Cd stress. The results indicated that Cd stress led to a decline in community diversity (Z-score), network complexity and stability, an increase in species turnover, and a regulation of community structure. Cd stress significantly increased the relative importance of dispersal limitation and homogeneous selection, reducing community drift and rendering the community more deterministic. Finally, Cd stress significantly reduced soil functional potential (Z-score) and soil functional stability (Z-score), impairing soil carbon, nitrogen, phosphorus, and sulfur cycling. It is noteworthy that correlation and random forest analyses revealed significant effects of specific community assembly processes, including dispersal limitation, homogeneous selection, drift (and others), on changes in soil functional potential (Z-score). The results emphasize the pivotal role of community assembly processes in dictating soil functioning under Cd stress, thereby offering novel insights into the comprehension of microbial-driven mechanisms governing soil functioning.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.