Artificial Intelligence-Assisted Experimental Optimization of Water Oxidation Catalysts

IF 1.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Henrik Spitzenpfeil, Marius Neumann, Nick Hausen, Prof. Dr. Regina Palkovits, Dr. Stefan Palkovits
{"title":"Artificial Intelligence-Assisted Experimental Optimization of Water Oxidation Catalysts","authors":"Henrik Spitzenpfeil,&nbsp;Marius Neumann,&nbsp;Nick Hausen,&nbsp;Prof. Dr. Regina Palkovits,&nbsp;Dr. Stefan Palkovits","doi":"10.1002/cite.202400156","DOIUrl":null,"url":null,"abstract":"<p>Artificial intelligence (AI) methods are very often used to make predictions for datasets that were created externally in arbitrary experiments or on already literature known datasets. In this work, we try to make use of active learning techniques to search for an optimal strategy for the startup-phase of bulk nickel electrodes in the oxygen evolution reaction. The data collected was afterwards reduced in dimensions and used to extract additional information that were learned via an artificial neural network (ANN) on the dataset, respectively.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"97 5","pages":"472-478"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400156","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Ingenieur Technik","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cite.202400156","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) methods are very often used to make predictions for datasets that were created externally in arbitrary experiments or on already literature known datasets. In this work, we try to make use of active learning techniques to search for an optimal strategy for the startup-phase of bulk nickel electrodes in the oxygen evolution reaction. The data collected was afterwards reduced in dimensions and used to extract additional information that were learned via an artificial neural network (ANN) on the dataset, respectively.

Abstract Image

水氧化催化剂的人工智能辅助实验优化
人工智能(AI)方法经常用于对任意实验中外部创建的数据集或已经文献已知的数据集进行预测。在这项工作中,我们试图利用主动学习技术来寻找出氧反应中大块镍电极启动阶段的最佳策略。收集到的数据随后被降维,并用于提取额外的信息,这些信息分别通过人工神经网络(ANN)在数据集上学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemie Ingenieur Technik
Chemie Ingenieur Technik 工程技术-工程:化工
CiteScore
3.40
自引率
15.80%
发文量
601
审稿时长
3-6 weeks
期刊介绍: Die Chemie Ingenieur Technik ist die wohl angesehenste deutschsprachige Zeitschrift für Verfahrensingenieure, technische Chemiker, Apparatebauer und Biotechnologen. Als Fachorgan von DECHEMA, GDCh und VDI-GVC gilt sie als das unverzichtbare Forum für den Erfahrungsaustausch zwischen Forschern und Anwendern aus Industrie, Forschung und Entwicklung. Wissenschaftlicher Fortschritt und Praxisnähe: Eine Kombination, die es nur in der CIT gibt!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信