{"title":"Vertical Load-Carrying Capacity-Based Functionality Fragility Curve (VLCC-FFC) for Physics-Enhanced Probabilistic Seismic Resilience Assessment of Bridges: Methodology and Application","authors":"Jingcheng Wang, Aijun Ye, Xiaowei Wang, Yue Li","doi":"10.1002/eqe.4341","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Current practices for estimating postearthquake functionality of a bridge typically rely on assessing the physical damage and are often determined based on empirical engineering judgements. This approach can introduce significant variability in functionality estimates, further reducing the confidence level in probabilistic resilience assessment used for decision-making. To address this issue, this study develops a physics-enhanced probabilistic seismic resilience framework for bridges. In this framework, postevent functionality is physically evaluated by quantifying the loss of vertical load-carrying capacity (VLCC) using incremental dynamic analysis followed by pushdown analysis. A novel concept named VLCC-based functionality fragility curve (VLCC-FFC) is proposed. The VLCC-FFC represents the probability that the loss of VLCC will exceed a specific functionality state (FS, defined based on the level of VLCC loss) at a given seismic intensity measure. Furthermore, joint probability density functions (JPDFs) of VLCC loss and physical damage measures (e.g., residual drift ratio of a column) are developed for each FS to facilitate the probabilistic assessment of postevent residual functionality and the corresponding recovery process. The proposed framework is demonstrated through a case study of pile-shaft–supported girder bridges subjected to earthquakes and liquefaction-induced transverse spreading. The developed JPDFs for VLCC loss and residual drift ratio are available for implementation at https://bit.ly/JW912.</p>\n </div>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"54 7","pages":"1894-1911"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4341","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Current practices for estimating postearthquake functionality of a bridge typically rely on assessing the physical damage and are often determined based on empirical engineering judgements. This approach can introduce significant variability in functionality estimates, further reducing the confidence level in probabilistic resilience assessment used for decision-making. To address this issue, this study develops a physics-enhanced probabilistic seismic resilience framework for bridges. In this framework, postevent functionality is physically evaluated by quantifying the loss of vertical load-carrying capacity (VLCC) using incremental dynamic analysis followed by pushdown analysis. A novel concept named VLCC-based functionality fragility curve (VLCC-FFC) is proposed. The VLCC-FFC represents the probability that the loss of VLCC will exceed a specific functionality state (FS, defined based on the level of VLCC loss) at a given seismic intensity measure. Furthermore, joint probability density functions (JPDFs) of VLCC loss and physical damage measures (e.g., residual drift ratio of a column) are developed for each FS to facilitate the probabilistic assessment of postevent residual functionality and the corresponding recovery process. The proposed framework is demonstrated through a case study of pile-shaft–supported girder bridges subjected to earthquakes and liquefaction-induced transverse spreading. The developed JPDFs for VLCC loss and residual drift ratio are available for implementation at https://bit.ly/JW912.
期刊介绍:
Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following:
ground motions for analysis and design
geotechnical earthquake engineering
probabilistic and deterministic methods of dynamic analysis
experimental behaviour of structures
seismic protective systems
system identification
risk assessment
seismic code requirements
methods for earthquake-resistant design and retrofit of structures.