Superior Shock Resistance of Magnesium and Magnesium–Aluminum Alloys with Cerium Addition

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Maadhav Anand, Shreshtha Ranjan, Shubham Sisodia, Gopalan Jagadeesh, Satyam Suwas, Ankur Chauhan
{"title":"Superior Shock Resistance of Magnesium and Magnesium–Aluminum Alloys with Cerium Addition","authors":"Maadhav Anand,&nbsp;Shreshtha Ranjan,&nbsp;Shubham Sisodia,&nbsp;Gopalan Jagadeesh,&nbsp;Satyam Suwas,&nbsp;Ankur Chauhan","doi":"10.1002/adem.202402488","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the shock response of forged and annealed commercially pure magnesium (Cp<b>–</b>Mg) and its cerium (Ce)-alloyed variants (Mg<b>–</b>0.5Ce and Mg<b>–</b>3Al<b>–</b>0.5Ce). Shock loading is performed using a conventional shock tube setup at two pressure levels along the forging direction (FD). Under low-pressure conditions, all materials deform without fracturing, with Cp<b>–</b>Mg exhibiting the highest deflection. However, at higher pressure, Cp<b>–</b>Mg discs fracture, displaying brittle cleavage, whereas Mg<b>–</b>0.5Ce and Mg<b>–</b>3Al<b>–</b>0.5Ce absorb impact energy without failure due to their superior strength–ductility balance. Among the Ce-alloyed variants, Mg<b>–</b>3Al<b>–</b>0.5Ce demonstrates slightly better shock resistance, exhibiting lower deflection and effective strain. Shock loading does not alter the grain size but results in a high density of predominantly extension twins that complements slip activity in all materials, particularly at higher pressures and in Cp<b>–</b>Mg. Post-shock analysis reveals the greatest reduction in basal texture intensity in Cp<b>–</b>Mg, while Mg<b>–</b>0.5Ce and Mg<b>–</b>3Al<b>–</b>0.5Ce show a moderate decrease. This reduction is attributed to slip and twinning, with Cp<b>–</b>Mg displaying the highest twinning activity. Local misorientation analysis indicates strain localization and stress concentrations at twin–matrix interfaces. Overall, Mg<b>–</b>0.5Ce and Mg<b>–</b>3Al<b>–</b>0.5Ce exhibit superior shock resistance compared to Cp<b>–</b>Mg, owing to their higher toughness, lower twin density, and increased non-basal slip activity.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402488","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the shock response of forged and annealed commercially pure magnesium (CpMg) and its cerium (Ce)-alloyed variants (Mg0.5Ce and Mg3Al0.5Ce). Shock loading is performed using a conventional shock tube setup at two pressure levels along the forging direction (FD). Under low-pressure conditions, all materials deform without fracturing, with CpMg exhibiting the highest deflection. However, at higher pressure, CpMg discs fracture, displaying brittle cleavage, whereas Mg0.5Ce and Mg3Al0.5Ce absorb impact energy without failure due to their superior strength–ductility balance. Among the Ce-alloyed variants, Mg3Al0.5Ce demonstrates slightly better shock resistance, exhibiting lower deflection and effective strain. Shock loading does not alter the grain size but results in a high density of predominantly extension twins that complements slip activity in all materials, particularly at higher pressures and in CpMg. Post-shock analysis reveals the greatest reduction in basal texture intensity in CpMg, while Mg0.5Ce and Mg3Al0.5Ce show a moderate decrease. This reduction is attributed to slip and twinning, with CpMg displaying the highest twinning activity. Local misorientation analysis indicates strain localization and stress concentrations at twin–matrix interfaces. Overall, Mg0.5Ce and Mg3Al0.5Ce exhibit superior shock resistance compared to CpMg, owing to their higher toughness, lower twin density, and increased non-basal slip activity.

Abstract Image

添加铈的镁及镁铝合金具有优异的抗冲击性
本研究研究了锻造和退火的商业纯镁(Cp-Mg)及其铈(Ce)合金变体(Mg-0.5Ce和Mg-3Al-0.5Ce)的冲击响应。冲击加载使用传统的激波管设置,沿锻造方向(FD)在两个压力水平下进行。在低压条件下,所有材料均发生变形而不发生断裂,其中Cp-Mg的挠度最大。然而,在较高压力下,Cp-Mg圆片断裂,呈现脆性解理,而Mg-0.5Ce和Mg-3Al-0.5Ce由于其较好的强度-塑性平衡,吸收冲击能量而不破坏。在ce合金中,Mg-3Al-0.5Ce表现出稍好的抗冲击性能,具有较低的挠度和有效应变。冲击载荷不会改变晶粒尺寸,但会导致高密度的主要延伸孪晶,这补充了所有材料的滑移活性,特别是在高压和Cp-Mg中。冲击后分析表明,Cp-Mg的基底织构强度降低幅度最大,Mg-0.5Ce和Mg-3Al-0.5Ce的基底织构强度降低幅度较小。这种减少归因于滑移和孪生,其中Cp-Mg表现出最高的孪生活性。局部错取向分析表明双基体界面处存在应变局部化和应力集中现象。总体而言,由于Mg-0.5Ce和Mg-3Al-0.5Ce具有更高的韧性、更低的孪晶密度和更高的非基底滑动活性,因此与Cp-Mg相比,它们具有更强的抗冲击性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信