Janay A. Fox, Simon M. Reader, Rowan D. H. Barrett
{"title":"Rapid Neural DNA Methylation Responses to Predation Stress in Trinidadian Guppies","authors":"Janay A. Fox, Simon M. Reader, Rowan D. H. Barrett","doi":"10.1111/mec.17774","DOIUrl":null,"url":null,"abstract":"<p>DNA methylation (DNAm) is a well-studied epigenetic mechanism implicated in environmentally induced phenotypes and phenotypic plasticity. However, few studies investigate the timescale of DNAm shifts. Thus, it is uncertain whether DNAm can change on timescales relevant for rapid phenotypic shifts, such as during the expression of short-term behavioural plasticity. DNAm could be especially reactive in the brain, potentially increasing its relevance for behavioural plasticity. Most research investigating neural changes in methylation has been conducted in mammalian systems, on isolated individuals, and using stressors that are less ecologically relevant, reducing their generalisability to other natural systems. We exposed pairs of male and female Trinidadian guppies (<i>Poecilia reticulata</i>) to alarm cue, conspecific skin extract that reliably induces anti-predator behaviour, or a control cue. Whole-genome bisulphite sequencing on whole brains at various time points following cue exposure (0.5, 1, 4, 24, and 72 h) allowed us to uncover the timescale of neural DNAm responses. Males and females both showed rapid shifts in DNAm in as little as 0.5 h. However, males and females differed in the time course of their responses: both sexes showed a peak in the number of loci showing significant responses at 4 h, but males showed an additional peak at 72 h. We suggest that this finding could be due to the differing longer-term plastic responses between the sexes. This study shows that DNAm can be rapidly induced by an ecologically relevant stressor in fish and suggests that DNAm could be involved in short-term behavioural plasticity.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 10","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17774","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17774","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA methylation (DNAm) is a well-studied epigenetic mechanism implicated in environmentally induced phenotypes and phenotypic plasticity. However, few studies investigate the timescale of DNAm shifts. Thus, it is uncertain whether DNAm can change on timescales relevant for rapid phenotypic shifts, such as during the expression of short-term behavioural plasticity. DNAm could be especially reactive in the brain, potentially increasing its relevance for behavioural plasticity. Most research investigating neural changes in methylation has been conducted in mammalian systems, on isolated individuals, and using stressors that are less ecologically relevant, reducing their generalisability to other natural systems. We exposed pairs of male and female Trinidadian guppies (Poecilia reticulata) to alarm cue, conspecific skin extract that reliably induces anti-predator behaviour, or a control cue. Whole-genome bisulphite sequencing on whole brains at various time points following cue exposure (0.5, 1, 4, 24, and 72 h) allowed us to uncover the timescale of neural DNAm responses. Males and females both showed rapid shifts in DNAm in as little as 0.5 h. However, males and females differed in the time course of their responses: both sexes showed a peak in the number of loci showing significant responses at 4 h, but males showed an additional peak at 72 h. We suggest that this finding could be due to the differing longer-term plastic responses between the sexes. This study shows that DNAm can be rapidly induced by an ecologically relevant stressor in fish and suggests that DNAm could be involved in short-term behavioural plasticity.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms