Fair-Weather Nearshore Surface Winds: Observational Insights and Gaussian Process Regression Analysis

IF 3.4 2区 地球科学 Q1 OCEANOGRAPHY
Charlotte Benbow, Jamie MacMahan, Ed B. Thornton, Pat Collins, James Hlywiak, Milan Curcic, Jesus Ruiz-Plancarte, David D. Flagg, Qing Wang, Brian K. Haus
{"title":"Fair-Weather Nearshore Surface Winds: Observational Insights and Gaussian Process Regression Analysis","authors":"Charlotte Benbow,&nbsp;Jamie MacMahan,&nbsp;Ed B. Thornton,&nbsp;Pat Collins,&nbsp;James Hlywiak,&nbsp;Milan Curcic,&nbsp;Jesus Ruiz-Plancarte,&nbsp;David D. Flagg,&nbsp;Qing Wang,&nbsp;Brian K. Haus","doi":"10.1029/2024JC021139","DOIUrl":null,"url":null,"abstract":"<p>The fair-weather (wind speeds <span></span><math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n </mrow>\n <annotation> ${&lt; } $</annotation>\n </semantics></math>10 m/s), surface (<span></span><math>\n <semantics>\n <mrow>\n <mi>z</mi>\n <mo>=</mo>\n </mrow>\n <annotation> $z=$</annotation>\n </semantics></math> 4 m), nearshore wind field modification is examined with multiple cross-shore arrays spanning from the coastline to 40 km offshore, deployed within four-month-long field experiments, measuring winds and air-water temperatures. The over-water to coastline winds ratio, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>U</mi>\n </msub>\n </mrow>\n <annotation> ${R}_{U}$</annotation>\n </semantics></math>, was previously explored for offshore winds with limited observations and minimally for onshore and alongshore winds. Array observations provide a complete picture of the nearshore wind field for all wind orientations. The over-water wind and temperature are linearly related to coastline values near the coastline, with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>r</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation> ${r}^{2}$</annotation>\n </semantics></math> decreasing with distance from shore, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>X</mi>\n <mi>W</mi>\n </msup>\n </mrow>\n <annotation> ${X}^{W}$</annotation>\n </semantics></math>, with a decorrelation scale of 10 km. Mean <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>U</mi>\n </msub>\n </mrow>\n <annotation> ${R}_{U}$</annotation>\n </semantics></math> as a function of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>X</mi>\n <mi>W</mi>\n </msup>\n </mrow>\n <annotation> ${X}^{W}$</annotation>\n </semantics></math> differs per wind orientation, consistent with prior work. An <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>R</mi>\n <mo>ˆ</mo>\n </mover>\n <mi>U</mi>\n </msub>\n </mrow>\n <annotation> ${\\widehat{R}}_{U}$</annotation>\n </semantics></math> model is developed from exponential Gaussian Process Regression (GPR), which accurately predicts the wind field with 20% data set holdback to elucidate the cross-shore patterns and variable co-dependence. The modeled Partial Dependence Plots provide <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>U</mi>\n </msub>\n </mrow>\n <annotation> ${R}_{U}$</annotation>\n </semantics></math> dependency as a function of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>X</mi>\n <mi>W</mi>\n </msup>\n </mrow>\n <annotation> ${X}^{W}$</annotation>\n </semantics></math> on coastline winds, and temperature differences without preconceptions. A consistent nearshore wind slowing occurs that varies in amplitude and distance, and changes with variable co-dependence for wind orientation. The onshore wind slowing is counterintuitive, though consistent with sophisticated numerical models. Wind gustiness exhibits <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>X</mi>\n <mi>W</mi>\n </msup>\n </mrow>\n <annotation> ${X}^{W}$</annotation>\n </semantics></math> dependence, with linear normalization akin to the open ocean but larger. The <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>U</mi>\n </msub>\n </mrow>\n <annotation> ${R}_{U}$</annotation>\n </semantics></math> observations and GPR highlight nearshore winds' cross-shore extent and complexity, which are important for atmospheric and oceanic studies.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021139","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021139","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The fair-weather (wind speeds < ${< } $ 10 m/s), surface ( z = $z=$ 4 m), nearshore wind field modification is examined with multiple cross-shore arrays spanning from the coastline to 40 km offshore, deployed within four-month-long field experiments, measuring winds and air-water temperatures. The over-water to coastline winds ratio, R U ${R}_{U}$ , was previously explored for offshore winds with limited observations and minimally for onshore and alongshore winds. Array observations provide a complete picture of the nearshore wind field for all wind orientations. The over-water wind and temperature are linearly related to coastline values near the coastline, with r 2 ${r}^{2}$ decreasing with distance from shore, X W ${X}^{W}$ , with a decorrelation scale of 10 km. Mean R U ${R}_{U}$ as a function of X W ${X}^{W}$ differs per wind orientation, consistent with prior work. An R ˆ U ${\widehat{R}}_{U}$ model is developed from exponential Gaussian Process Regression (GPR), which accurately predicts the wind field with 20% data set holdback to elucidate the cross-shore patterns and variable co-dependence. The modeled Partial Dependence Plots provide R U ${R}_{U}$ dependency as a function of X W ${X}^{W}$ on coastline winds, and temperature differences without preconceptions. A consistent nearshore wind slowing occurs that varies in amplitude and distance, and changes with variable co-dependence for wind orientation. The onshore wind slowing is counterintuitive, though consistent with sophisticated numerical models. Wind gustiness exhibits X W ${X}^{W}$ dependence, with linear normalization akin to the open ocean but larger. The R U ${R}_{U}$ observations and GPR highlight nearshore winds' cross-shore extent and complexity, which are important for atmospheric and oceanic studies.

Abstract Image

晴朗天气近岸地面风:观测见解和高斯过程回归分析
晴天(风速<;$ {& lt;{$ 10 m/s),海面(z=$ z=$ 4 m),近岸风场的变化通过多个横跨海岸线到离岸40公里的跨岸阵列进行检查,部署在为期四个月的现场实验中,测量风和空气-水温度。水上风与海岸线风的比值R U ${R}_{U}$,以前在有限的观测下对海上风进行了探索,对陆上和沿岸风的观测很少。阵列观测提供了近岸风场所有风向的完整图像。在海岸线附近,海面风和温度与海岸线值呈线性相关,r 2 ${r}^{2}$随着离海岸的距离而减小;X W ${X}^{W}$,解相关尺度为10 km。平均R U ${R}_{U}$作为X W ${X}^{W}$的函数随风向不同而不同,与先前的工作一致。利用指数高斯过程回归(GPR)建立了一个R - U ${\widehat{R}}_{U}$模型,该模型在20%的数据集延迟下准确地预测了风场,以阐明跨岸模式和变量的共依赖关系。建模的部分依赖图提供了R U ${R}_{U}$的依赖关系,作为海岸线风对X W ${X}^{W}$的函数。没有先入之见的温差。持续的近岸风减速发生在不同的振幅和距离上,并随风向的变化而变化。尽管与复杂的数值模型一致,但陆上风力的放缓却是违反直觉的。风速表现出X W ${X}^{W}$的相关性,其线性归一化与公海相似,但更大。R U ${R}_{U}$观测和GPR突出了近岸风的跨岸范围和复杂性,这对大气和海洋研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信