{"title":"An Energy Level Alignment Study of 2PACz Molecule on Perovskite Device-Related Interfaces by Vacuum Deposition","authors":"Jielei Li, Shengwen Li, Bingchen He, Ruifeng Zheng, Yulin Wang, Shi Chen","doi":"10.1002/aesr.202400336","DOIUrl":null,"url":null,"abstract":"<p>Self-assembling molecules (SAM) have been widely used in inverted perovskite solar cells (PSC) as a hole transfer layer due to nearly lossless charge transfer giving excellent device performance. However, the energy level alignment between SAM- and PSC-related interfaces has not been systematically studied. Herein, the 2PACz, a typical SAM with the largest dipole moment, is chosen as the model system and is studied by vacuum deposition. It is found that the energy level alignment is determined by the orientation of 2PACz molecules on a different substrate. The molecules are lying down on highly oriented pyrolytic graphite and giving nearly zero interface dipole. On solvent-cleaned and plasma-treated indium tin oxide (ITO) substrates, the SAM is vertically assembled with 0.22 and 0.13 eV work function increases, respectively. However, on sputtered ITO, SAM is assembled with upside down orientation, with 0.51 eV work function decrease. The change of orientation is due to strong interaction between oxygen vacancies in ITO substrate and carbazole head group of 2PACz. On perovskite film, SAM also shows a slightly upward orientation with additional passivation of free MA<sup>+</sup> ions. Herein, it is confirmed that the energy level alignment of SAM plays an important role in hole extraction.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 5","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400336","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Self-assembling molecules (SAM) have been widely used in inverted perovskite solar cells (PSC) as a hole transfer layer due to nearly lossless charge transfer giving excellent device performance. However, the energy level alignment between SAM- and PSC-related interfaces has not been systematically studied. Herein, the 2PACz, a typical SAM with the largest dipole moment, is chosen as the model system and is studied by vacuum deposition. It is found that the energy level alignment is determined by the orientation of 2PACz molecules on a different substrate. The molecules are lying down on highly oriented pyrolytic graphite and giving nearly zero interface dipole. On solvent-cleaned and plasma-treated indium tin oxide (ITO) substrates, the SAM is vertically assembled with 0.22 and 0.13 eV work function increases, respectively. However, on sputtered ITO, SAM is assembled with upside down orientation, with 0.51 eV work function decrease. The change of orientation is due to strong interaction between oxygen vacancies in ITO substrate and carbazole head group of 2PACz. On perovskite film, SAM also shows a slightly upward orientation with additional passivation of free MA+ ions. Herein, it is confirmed that the energy level alignment of SAM plays an important role in hole extraction.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).