On the Electrochemical Performance and Capacity Losses Seen for LiFePO4 Electrodes in Carbonate Electrolytes at Potentials up to 5.0 V versus Li+/Li

IF 6.2 Q2 ENERGY & FUELS
Ahmed S. Etman, Leif Nyholm
{"title":"On the Electrochemical Performance and Capacity Losses Seen for LiFePO4 Electrodes in Carbonate Electrolytes at Potentials up to 5.0 V versus Li+/Li","authors":"Ahmed S. Etman,&nbsp;Leif Nyholm","doi":"10.1002/aesr.202400347","DOIUrl":null,"url":null,"abstract":"<p>Lithium iron phosphate (LFP) is widely considered as a low-potential positive electrode material. Herein, the high-voltage stability and capacity retention of LFP composite electrodes are investigated at potentials up to 5.0 V (versus Li<sup>+</sup>/Li) using Li-metal containing half-cells and an electrolyte composed of 1.0 M LiPF<sub>6</sub> dissolved in 1:1 ethylene carbonate (EC)/diethyl carbonate (DEC). The results indicate that LFP electrodes are stable at such high potentials and that cycling up to 5.0 V (versus Li<sup>+</sup>/Li) at a rate of 1 C yields a 15% higher capacity compared to cycling up to 4.0 V (versus Li<sup>+</sup>/Li). The results further indicate that the lithiation of delithiated LFP electrode is incomplete. This yields a diffusion-controlled capacity loss as some Li<sup>+</sup> ions (and associated electrons) diffuse too far into the electrode to be accessible on the timescale of the subsequent delithiation. Analogue diffusion-controlled capacity losses are also demonstrated for LFP–graphite full-cells cycled up to 4.0 and 5.0 V. These insights, pave the way for new approaches to minimize capacity losses for lithium-ion batteries. The demonstrated high-voltage stability of LFP, also indicates that LFP can be used as a protective coating on high-voltage transition metal oxide positive electrodes.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 5","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400347","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium iron phosphate (LFP) is widely considered as a low-potential positive electrode material. Herein, the high-voltage stability and capacity retention of LFP composite electrodes are investigated at potentials up to 5.0 V (versus Li+/Li) using Li-metal containing half-cells and an electrolyte composed of 1.0 M LiPF6 dissolved in 1:1 ethylene carbonate (EC)/diethyl carbonate (DEC). The results indicate that LFP electrodes are stable at such high potentials and that cycling up to 5.0 V (versus Li+/Li) at a rate of 1 C yields a 15% higher capacity compared to cycling up to 4.0 V (versus Li+/Li). The results further indicate that the lithiation of delithiated LFP electrode is incomplete. This yields a diffusion-controlled capacity loss as some Li+ ions (and associated electrons) diffuse too far into the electrode to be accessible on the timescale of the subsequent delithiation. Analogue diffusion-controlled capacity losses are also demonstrated for LFP–graphite full-cells cycled up to 4.0 and 5.0 V. These insights, pave the way for new approaches to minimize capacity losses for lithium-ion batteries. The demonstrated high-voltage stability of LFP, also indicates that LFP can be used as a protective coating on high-voltage transition metal oxide positive electrodes.

Abstract Image

碳酸盐岩电解液中LiFePO4电极在高达5.0 V电位下的电化学性能和容量损失与Li+/Li的对比
磷酸铁锂(LFP)被广泛认为是一种低电位正极材料。本文研究了LFP复合电极在高达5.0 V(相对于Li+/Li)电位下的高压稳定性和容量保持,使用含锂金属的半电池和由1.0 M LiPF6溶于1:1碳酸乙烯酯(EC)/碳酸二乙酯(DEC)组成的电解质。结果表明,LFP电极在如此高的电位下是稳定的,并且与循环到4.0 V(相对于Li+/Li)相比,以1c的速率循环到5.0 V(相对于Li+/Li)的容量增加了15%。结果进一步表明,LFP电极的锂化不完全。这会产生扩散控制的容量损失,因为一些Li+离子(和相关的电子)扩散到电极中太远,无法在随后的衰减时间尺度上接近。模拟扩散控制的容量损失也证明了lfp -石墨全电池循环高达4.0和5.0 V。这些见解为最小化锂离子电池容量损失的新方法铺平了道路。结果表明,LFP具有良好的高压稳定性,可以作为高压过渡金属氧化物正极的保护涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信