{"title":"On the Electrochemical Performance and Capacity Losses Seen for LiFePO4 Electrodes in Carbonate Electrolytes at Potentials up to 5.0 V versus Li+/Li","authors":"Ahmed S. Etman, Leif Nyholm","doi":"10.1002/aesr.202400347","DOIUrl":null,"url":null,"abstract":"<p>Lithium iron phosphate (LFP) is widely considered as a low-potential positive electrode material. Herein, the high-voltage stability and capacity retention of LFP composite electrodes are investigated at potentials up to 5.0 V (versus Li<sup>+</sup>/Li) using Li-metal containing half-cells and an electrolyte composed of 1.0 M LiPF<sub>6</sub> dissolved in 1:1 ethylene carbonate (EC)/diethyl carbonate (DEC). The results indicate that LFP electrodes are stable at such high potentials and that cycling up to 5.0 V (versus Li<sup>+</sup>/Li) at a rate of 1 C yields a 15% higher capacity compared to cycling up to 4.0 V (versus Li<sup>+</sup>/Li). The results further indicate that the lithiation of delithiated LFP electrode is incomplete. This yields a diffusion-controlled capacity loss as some Li<sup>+</sup> ions (and associated electrons) diffuse too far into the electrode to be accessible on the timescale of the subsequent delithiation. Analogue diffusion-controlled capacity losses are also demonstrated for LFP–graphite full-cells cycled up to 4.0 and 5.0 V. These insights, pave the way for new approaches to minimize capacity losses for lithium-ion batteries. The demonstrated high-voltage stability of LFP, also indicates that LFP can be used as a protective coating on high-voltage transition metal oxide positive electrodes.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 5","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400347","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium iron phosphate (LFP) is widely considered as a low-potential positive electrode material. Herein, the high-voltage stability and capacity retention of LFP composite electrodes are investigated at potentials up to 5.0 V (versus Li+/Li) using Li-metal containing half-cells and an electrolyte composed of 1.0 M LiPF6 dissolved in 1:1 ethylene carbonate (EC)/diethyl carbonate (DEC). The results indicate that LFP electrodes are stable at such high potentials and that cycling up to 5.0 V (versus Li+/Li) at a rate of 1 C yields a 15% higher capacity compared to cycling up to 4.0 V (versus Li+/Li). The results further indicate that the lithiation of delithiated LFP electrode is incomplete. This yields a diffusion-controlled capacity loss as some Li+ ions (and associated electrons) diffuse too far into the electrode to be accessible on the timescale of the subsequent delithiation. Analogue diffusion-controlled capacity losses are also demonstrated for LFP–graphite full-cells cycled up to 4.0 and 5.0 V. These insights, pave the way for new approaches to minimize capacity losses for lithium-ion batteries. The demonstrated high-voltage stability of LFP, also indicates that LFP can be used as a protective coating on high-voltage transition metal oxide positive electrodes.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).