Mechanisms of lithium and cesium enrichment in the Semi-Dazi geothermal field, Qinghai-Xizang Plateau: insights from H–O–Li–Sr isotopes

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS
Sheng Pan, Ping Zhao, Hui Guan, Dawa Nan, Zhaoying Yang, Xiaoming Liu, Shaopeng Gao, Yahui Yue
{"title":"Mechanisms of lithium and cesium enrichment in the Semi-Dazi geothermal field, Qinghai-Xizang Plateau: insights from H–O–Li–Sr isotopes","authors":"Sheng Pan,&nbsp;Ping Zhao,&nbsp;Hui Guan,&nbsp;Dawa Nan,&nbsp;Zhaoying Yang,&nbsp;Xiaoming Liu,&nbsp;Shaopeng Gao,&nbsp;Yahui Yue","doi":"10.1186/s40517-025-00348-3","DOIUrl":null,"url":null,"abstract":"<div><p>Hot springs in the southern Qinghai-Xizang Plateau show anomalous lithium (Li) and cesium (Cs) enrichment, but the mechanisms driving this enrichment remain poorly constrained. Using multi-isotope tracers (H, O, Li, Sr), we investigate the Semi-Dazi geothermal field, which hosts the Plateau’s highest recorded geothermal Cs concentrations. The system comprises two geographically separated geothermal areas: Semi and Dazi, spaced ~ 15 km apart, displaying distinct hydrogeochemical signatures. Semi hot springs show significantly higher Li (34.2 to 35.6 mg/L) and Cs (49.8 to 52.7 mg/L) concentrations than Dazi (Li: 11.4 to 21.1 mg/L; Cs: 21.5 to 37.7 mg/L). Isotopic contrasts further differentiate the areas: Semi exhibits elevated δ<sup>7</sup>Li (1.53 to 1.91 ‰) and lower <sup>87</sup>Sr/<sup>86</sup>Sr (0.739 to 0.741), whereas Dazi shows δ<sup>7</sup>Li values of − 0.25 to 1.24 ‰ and <sup>87</sup>Sr/<sup>86</sup>Sr ratios of 0.742 to 0.759. Two key processes govern enrichment: (1) atmospheric recharge infiltrates Li–Cs-rich strata, where high-temperature water–rock interactions (217 °C at Semi and 197 °C at Dazi reservoirs) mobilize these elements into geothermal waters; (2) phase separation during ascent causes differential steam loss (Semi: 24%, concentration factor 1.32; Dazi: 8 to 21%, 1.08 to 1.26). Secondary processes (cold water mixing, conductive cooling, mineral adsorption) further modify surface hot springs geochemistry. Semi-Dazi geothermal field illustrates how a shared geothermal system can yield chemically distinct fluids from separate reservoirs characterized by differing hydraulic connectivity and circulation pathways. Geyserite deposits and high reservoir temperatures suggest that a crustal partial melt layer adds extra heat, intensifying water–rock reactions. The occurrence of Li–Cs-rich springs on the Plateau is intrinsically linked to elevated concentrations of these elements in underlying crustal source rocks and spatially associated with deep, extensive fault systems, particularly at fault convergences. These findings underscore the necessity of multi-isotope models for interpreting geothermal Li–Cs anomalies in continental collision zones, with implications for strategic mineral exploration.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"13 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-025-00348-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-025-00348-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Hot springs in the southern Qinghai-Xizang Plateau show anomalous lithium (Li) and cesium (Cs) enrichment, but the mechanisms driving this enrichment remain poorly constrained. Using multi-isotope tracers (H, O, Li, Sr), we investigate the Semi-Dazi geothermal field, which hosts the Plateau’s highest recorded geothermal Cs concentrations. The system comprises two geographically separated geothermal areas: Semi and Dazi, spaced ~ 15 km apart, displaying distinct hydrogeochemical signatures. Semi hot springs show significantly higher Li (34.2 to 35.6 mg/L) and Cs (49.8 to 52.7 mg/L) concentrations than Dazi (Li: 11.4 to 21.1 mg/L; Cs: 21.5 to 37.7 mg/L). Isotopic contrasts further differentiate the areas: Semi exhibits elevated δ7Li (1.53 to 1.91 ‰) and lower 87Sr/86Sr (0.739 to 0.741), whereas Dazi shows δ7Li values of − 0.25 to 1.24 ‰ and 87Sr/86Sr ratios of 0.742 to 0.759. Two key processes govern enrichment: (1) atmospheric recharge infiltrates Li–Cs-rich strata, where high-temperature water–rock interactions (217 °C at Semi and 197 °C at Dazi reservoirs) mobilize these elements into geothermal waters; (2) phase separation during ascent causes differential steam loss (Semi: 24%, concentration factor 1.32; Dazi: 8 to 21%, 1.08 to 1.26). Secondary processes (cold water mixing, conductive cooling, mineral adsorption) further modify surface hot springs geochemistry. Semi-Dazi geothermal field illustrates how a shared geothermal system can yield chemically distinct fluids from separate reservoirs characterized by differing hydraulic connectivity and circulation pathways. Geyserite deposits and high reservoir temperatures suggest that a crustal partial melt layer adds extra heat, intensifying water–rock reactions. The occurrence of Li–Cs-rich springs on the Plateau is intrinsically linked to elevated concentrations of these elements in underlying crustal source rocks and spatially associated with deep, extensive fault systems, particularly at fault convergences. These findings underscore the necessity of multi-isotope models for interpreting geothermal Li–Cs anomalies in continental collision zones, with implications for strategic mineral exploration.

青藏高原半大子地热田锂、铯富集机制:来自H-O-Li-Sr同位素的启示
青藏高原南部温泉中锂(Li)和铯(Cs)富集异常,但其富集机制尚不明确。利用多同位素示踪剂(H, O, Li, Sr),我们研究了半大子地热田,它拥有高原最高的地热Cs浓度。该系统包括两个地理上分开的地热区:半地热区和大子地热区,相隔约15公里,具有明显的水文地球化学特征。半温泉的Li (34.2 ~ 35.6 mg/L)和Cs (49.8 ~ 52.7 mg/L)浓度显著高于大子(11.4 ~ 21.1 mg/L;Cs: 21.5 ~ 37.7 mg/L)。同位素对比进一步区分了该区:半区δ7Li值升高(1.53 ~ 1.91‰),87Sr/86Sr值降低(0.739 ~ 0.741),而大子区δ7Li值为- 0.25 ~ 1.24‰,87Sr/86Sr比值为0.742 ~ 0.759。两个关键的富集过程:(1)大气补给渗透到富含li - cs的地层中,高温水岩相互作用(半区217℃,大子区197℃)将这些元素动员到地热水中;(2)上升阶段相分离导致差异蒸汽损失(半:24%,浓度因子1.32;大子:8到21%,1.08到1.26)。二次处理(冷水混合、导电冷却、矿物吸附)进一步改变了地表温泉的地球化学特征。半大子地热田说明了一个共同的地热系统如何从不同的储层中产生化学性质不同的流体,这些储层具有不同的水力连通性和循环路径。硅辉石矿床和高储层温度表明,地壳部分熔融层增加了额外的热量,加剧了水岩反应。高原上富含锂碳元素的泉水的出现与下伏地壳烃源岩中这些元素浓度的升高有着内在的联系,在空间上与深而广泛的断层系统有关,特别是在断层会聚处。这些发现强调了多同位素模型解释大陆碰撞带地热Li-Cs异常的必要性,并对战略矿产勘探具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信