Juan M. Barba-Reyes, Lisbeth Harder, Sergio Marco Salas, Methasit Jaisa-aad, Clara Muñoz-Castro, Leonardo D. Garma, Nima Rafati, Mats Nilsson, Bradley T. Hyman, Alberto Serrano-Pozo, Ana B. Muñoz-Manchado
{"title":"Oligodendroglia vulnerability in the human dorsal striatum in Parkinson’s disease","authors":"Juan M. Barba-Reyes, Lisbeth Harder, Sergio Marco Salas, Methasit Jaisa-aad, Clara Muñoz-Castro, Leonardo D. Garma, Nima Rafati, Mats Nilsson, Bradley T. Hyman, Alberto Serrano-Pozo, Ana B. Muñoz-Manchado","doi":"10.1007/s00401-025-02884-5","DOIUrl":null,"url":null,"abstract":"<div><p>Oligodendroglia are the responsible cells for myelination in the central nervous system and their involvement in Parkinson’s disease (PD) is poorly understood. We performed sn-RNA-seq and image-based spatial transcriptomics of human caudate nucleus and putamen (dorsal striatum) from PD and control brain donors to elucidate the diversity of oligodendroglia and how they are affected by the disease. We profiled a total of ~ 200.000 oligodendroglial nuclei, defining 15 subclasses, from precursor to mature cells, 4 of which are disease-associated. These PD-specific populations are characterized by the overexpression of heat shock proteins, as well as distinct expression signatures related to immune responses, myelination alterations, and disrupted cell signaling pathways. We have also identified impairments in cell communication and oligodendrocyte development, evidenced by changes in neurotransmitter receptors expression and cell adhesion molecules. In addition, we observed significant disruptions in oligodendrocyte development, with aberrant differentiation trajectories and shifts in cell proportions, particularly in the transition from mature oligodendrocytes to disease-associated states. Quantitative immunohistochemical analysis revealed decreased myelin levels in the PD striatum, which correlated with transcriptomic alterations. Furthermore, spatial transcriptomics mapping revealed the distinct localization of disease-associated populations within the striatum, with evidence of impaired myelin integrity. Thus, we uncover oligodendroglia as a critical cell type in PD and a potential new therapeutic target for myelin-based interventions.</p></div>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":"149 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00401-025-02884-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00401-025-02884-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oligodendroglia are the responsible cells for myelination in the central nervous system and their involvement in Parkinson’s disease (PD) is poorly understood. We performed sn-RNA-seq and image-based spatial transcriptomics of human caudate nucleus and putamen (dorsal striatum) from PD and control brain donors to elucidate the diversity of oligodendroglia and how they are affected by the disease. We profiled a total of ~ 200.000 oligodendroglial nuclei, defining 15 subclasses, from precursor to mature cells, 4 of which are disease-associated. These PD-specific populations are characterized by the overexpression of heat shock proteins, as well as distinct expression signatures related to immune responses, myelination alterations, and disrupted cell signaling pathways. We have also identified impairments in cell communication and oligodendrocyte development, evidenced by changes in neurotransmitter receptors expression and cell adhesion molecules. In addition, we observed significant disruptions in oligodendrocyte development, with aberrant differentiation trajectories and shifts in cell proportions, particularly in the transition from mature oligodendrocytes to disease-associated states. Quantitative immunohistochemical analysis revealed decreased myelin levels in the PD striatum, which correlated with transcriptomic alterations. Furthermore, spatial transcriptomics mapping revealed the distinct localization of disease-associated populations within the striatum, with evidence of impaired myelin integrity. Thus, we uncover oligodendroglia as a critical cell type in PD and a potential new therapeutic target for myelin-based interventions.
期刊介绍:
Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.