Non-destructive assessment of aligned carbon nanotube structures through correlation of polymer nanocomposite properties via ultrasonic testing

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Ricardo Braga Nogueira Branco, Kohei Oyama, Olivia J. Cook, Grace M. Mu, Andrea P. Argüelles, Namiko Yamamoto, Charles E. Bakis
{"title":"Non-destructive assessment of aligned carbon nanotube structures through correlation of polymer nanocomposite properties via ultrasonic testing","authors":"Ricardo Braga Nogueira Branco,&nbsp;Kohei Oyama,&nbsp;Olivia J. Cook,&nbsp;Grace M. Mu,&nbsp;Andrea P. Argüelles,&nbsp;Namiko Yamamoto,&nbsp;Charles E. Bakis","doi":"10.1007/s11051-025-06329-8","DOIUrl":null,"url":null,"abstract":"<div><p>Evaluation of nanoparticle distribution and orientation within polymer nanocomposites is critical to ascertaining structure–property relationships but has been a challenge. Nanoparticles form multi-scale structures consisting of nanometer- and micrometer-scale agglomerations, requiring inspection of high resolution and large field of view (FOV) at the same time. Electron microscopy provides high-resolution 2D images of small FOV. Micro-computed tomography provides 3D images of moderate resolution and FOV, but is limited in its ability to resolve regions of similar elements such as polymers and carbon-based nanoparticles. In this work, an ultrasonic testing (UT) technique of a moderate resolution (sub-millimeter) was used to indirectly assess microstructures of carbon nanotubes (CNTs) within an epoxy matrix over a sizable volume (~ mm in all directions). CNTs were magnetically aligned and agglomerated using two different field strengths, and such CNT micro-structure change affected the fracture toughness data of CNT-epoxy nanocomposites. The propagation speed and energy loss (attenuation) of the reflected wave were correlated to changes of CNT orientation and distribution by magnetic field application.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11051-025-06329-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06329-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluation of nanoparticle distribution and orientation within polymer nanocomposites is critical to ascertaining structure–property relationships but has been a challenge. Nanoparticles form multi-scale structures consisting of nanometer- and micrometer-scale agglomerations, requiring inspection of high resolution and large field of view (FOV) at the same time. Electron microscopy provides high-resolution 2D images of small FOV. Micro-computed tomography provides 3D images of moderate resolution and FOV, but is limited in its ability to resolve regions of similar elements such as polymers and carbon-based nanoparticles. In this work, an ultrasonic testing (UT) technique of a moderate resolution (sub-millimeter) was used to indirectly assess microstructures of carbon nanotubes (CNTs) within an epoxy matrix over a sizable volume (~ mm in all directions). CNTs were magnetically aligned and agglomerated using two different field strengths, and such CNT micro-structure change affected the fracture toughness data of CNT-epoxy nanocomposites. The propagation speed and energy loss (attenuation) of the reflected wave were correlated to changes of CNT orientation and distribution by magnetic field application.

基于聚合物纳米复合材料性能相关性的超声定向碳纳米管结构无损评价
评价聚合物纳米复合材料中纳米颗粒的分布和取向对确定结构-性能关系至关重要,但一直是一个挑战。纳米颗粒形成由纳米级和微米级团块组成的多尺度结构,需要同时进行高分辨率和大视场(FOV)的检测。电子显微镜提供小视场的高分辨率二维图像。微计算机断层扫描提供中等分辨率和视场的3D图像,但其分辨类似元素(如聚合物和碳基纳米颗粒)区域的能力有限。在这项工作中,使用了中等分辨率(亚毫米)的超声测试(UT)技术来间接评估相当大体积(所有方向约mm)环氧基体内碳纳米管(CNTs)的微观结构。在两种不同场强的作用下,CNTs被磁排列并团聚,这种碳纳米管微观结构的变化影响了碳纳米管-环氧纳米复合材料的断裂韧性数据。在磁场作用下,反射波的传播速度和能量损耗(衰减)与碳纳米管取向和分布的变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信