{"title":"Cross-calibration of GRID via correlative spectral analysis of GRBs","authors":"Zirui Yang, Chenyu Wang, Hanwen Lin, Xiaofan Pan, Qize Liu, Xutao Zheng, Huaizhong Gao, Longhao Li, Qidong Wang, Jianping Cheng, Zhi Zeng, Ming Zeng, Hua Feng, Binbin Zhang, Zhonghai Wang, Rong Zhou, Yuanyuan Liu, Lin Lin, Jiayong Zhong, Jianyong Jiang, Wentao Han, Yang Tian, Benda Xu","doi":"10.1007/s10686-025-10002-2","DOIUrl":null,"url":null,"abstract":"<div><p>Gamma-ray bursts (GRBs) are among the most energetic phenomena in the universe, and their observation has significantly advanced with the development of space-based gamma-ray telescopes. The Gamma-Ray Integrated Detectors (GRID) mission has initiated a nanosatellite constellation capable of all-sky GRB monitoring, deploying 12 detector payloads in low Earth orbit and collecting its first batch of scientific data. For GRB analysis, dedicated detector response matrices (DRMs) were individually constructed for each detector using Monte Carlo simulations and ground calibration. To further validate detector performance under real operational conditions, cross-calibration with existing space missions offers a robust validation. Herein, cross-calibration between the GRID detectors and the Fermi’s Gamma-ray Burst Monitor (GBM) was performed through joint spectral analysis. The excellent agreement between the instruments validates the accuracy of GRID’s DRMs and the reliability of its scientific data. For nanosatellite constellations like GRID, cross-calibration through orbital observations involving multiple distributed detector payloads is a crucial tool for ensuring uniformity and verifying overall performance of such systems.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-025-10002-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-025-10002-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gamma-ray bursts (GRBs) are among the most energetic phenomena in the universe, and their observation has significantly advanced with the development of space-based gamma-ray telescopes. The Gamma-Ray Integrated Detectors (GRID) mission has initiated a nanosatellite constellation capable of all-sky GRB monitoring, deploying 12 detector payloads in low Earth orbit and collecting its first batch of scientific data. For GRB analysis, dedicated detector response matrices (DRMs) were individually constructed for each detector using Monte Carlo simulations and ground calibration. To further validate detector performance under real operational conditions, cross-calibration with existing space missions offers a robust validation. Herein, cross-calibration between the GRID detectors and the Fermi’s Gamma-ray Burst Monitor (GBM) was performed through joint spectral analysis. The excellent agreement between the instruments validates the accuracy of GRID’s DRMs and the reliability of its scientific data. For nanosatellite constellations like GRID, cross-calibration through orbital observations involving multiple distributed detector payloads is a crucial tool for ensuring uniformity and verifying overall performance of such systems.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.