Bounds on \(T_c\) in the Eliashberg Theory of Superconductivity. I: The \(\gamma \)-Model

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
M. K.-H. Kiessling, B. L. Altshuler, E. A. Yuzbashyan
{"title":"Bounds on \\(T_c\\) in the Eliashberg Theory of Superconductivity. I: The \\(\\gamma \\)-Model","authors":"M. K.-H. Kiessling,&nbsp;B. L. Altshuler,&nbsp;E. A. Yuzbashyan","doi":"10.1007/s10955-025-03446-5","DOIUrl":null,"url":null,"abstract":"<div><p>Using the recent reformulation for the Eliashberg theory of superconductivity in terms of a classical interacting Bloch spin chain model, rigorous upper and lower bounds on the critical temperature <span>\\(T_c\\)</span> are obtained for the <span>\\(\\gamma \\)</span> model—a version of Eliashberg theory in which the effective electron–electron interaction is proportional to <span>\\((g/|\\omega _n-\\omega _m|)^{\\gamma }\\)</span>, where <span>\\(\\omega _n-\\omega _m\\)</span> is the transferred Matsubara frequency, <span>\\(g&gt;0\\)</span> a reference energy, and <span>\\(\\gamma &gt;0\\)</span> a parameter. The rigorous lower bounds are based on a variational principle that identifies <span>\\((2\\pi T_c/g)^\\gamma \\)</span> with the largest (positive) eigenvalue <span>\\(\\mathfrak {g}(\\gamma )\\)</span> of an explicitly constructed compact, self-adjoint operator <span>\\(\\mathfrak {G}(\\gamma )\\)</span>. These lower bounds form an increasing sequence that converges to <span>\\(T_c(g,\\gamma )\\)</span>. The upper bound on <span>\\(T_c(g,\\gamma )\\)</span> is based on fixed point theory, proving linear stability of the normal state for <i>T</i> larger than the upper bound on <span>\\(T_c(g,\\gamma )\\)</span>.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03446-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03446-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using the recent reformulation for the Eliashberg theory of superconductivity in terms of a classical interacting Bloch spin chain model, rigorous upper and lower bounds on the critical temperature \(T_c\) are obtained for the \(\gamma \) model—a version of Eliashberg theory in which the effective electron–electron interaction is proportional to \((g/|\omega _n-\omega _m|)^{\gamma }\), where \(\omega _n-\omega _m\) is the transferred Matsubara frequency, \(g>0\) a reference energy, and \(\gamma >0\) a parameter. The rigorous lower bounds are based on a variational principle that identifies \((2\pi T_c/g)^\gamma \) with the largest (positive) eigenvalue \(\mathfrak {g}(\gamma )\) of an explicitly constructed compact, self-adjoint operator \(\mathfrak {G}(\gamma )\). These lower bounds form an increasing sequence that converges to \(T_c(g,\gamma )\). The upper bound on \(T_c(g,\gamma )\) is based on fixed point theory, proving linear stability of the normal state for T larger than the upper bound on \(T_c(g,\gamma )\).

Eliashberg超导理论中\(T_c\)的边界。I: \(\gamma \) -模型
利用最近对Eliashberg超导理论在经典相互作用Bloch自旋链模型中的重新阐述,获得了\(\gamma \)模型临界温度\(T_c\)的严格上限和下界。模型是Eliashberg理论的一个版本,其中有效电子-电子相互作用与\((g/|\omega _n-\omega _m|)^{\gamma }\)成正比,其中\(\omega _n-\omega _m\)是传递的Matsubara频率,\(g>0\)是参考能量,\(\gamma >0\)是一个参数。严格的下界基于变分原理,该原理将\((2\pi T_c/g)^\gamma \)与显式构造的紧凑自伴随算子\(\mathfrak {G}(\gamma )\)的最大(正)特征值\(\mathfrak {g}(\gamma )\)标识。这些下界形成一个递增序列,收敛于\(T_c(g,\gamma )\)。\(T_c(g,\gamma )\)上的上界基于不动点理论,证明了T大于\(T_c(g,\gamma )\)上界时正常状态的线性稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信