Exploring the thermal properties of gallium sulfide (GaS) for high-temperature applications

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Isik, G. Altuntas, N. M. Gasanly
{"title":"Exploring the thermal properties of gallium sulfide (GaS) for high-temperature applications","authors":"M. Isik,&nbsp;G. Altuntas,&nbsp;N. M. Gasanly","doi":"10.1007/s00339-025-08555-2","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal stability and decomposition behavior of gallium sulfide (GaS) material are critical factors in determining its suitability for high-temperature applications. This study comprehensively investigates the GaS compound using thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC) to assess its thermal stability, decomposition mechanisms, and potential applications. TGA results revealed that GaS exhibits remarkable thermal stability up to 722 °C, with a significant weight loss observed at temperatures exceeding 786 °C. The activation energy for the key decomposition process between 722 and 786 °C was calculated to be 257 kJ/mol, indicating an energy-intensive reaction involving sulfur evaporation and structural reorganization. DTA analysis highlighted a major endothermic event at 789 °C. Additionally, DSC analysis identified two thermal processes with activation energies of 117 and 53 kJ/mol, respectively. These findings demonstrate that GaS not only maintains its structural integrity at high temperatures but also possesses unique thermal properties, making it a promising candidate for high-temperature electronics, thermophotovoltaics, and sensor technologies where thermal robustness is essential.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00339-025-08555-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08555-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal stability and decomposition behavior of gallium sulfide (GaS) material are critical factors in determining its suitability for high-temperature applications. This study comprehensively investigates the GaS compound using thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC) to assess its thermal stability, decomposition mechanisms, and potential applications. TGA results revealed that GaS exhibits remarkable thermal stability up to 722 °C, with a significant weight loss observed at temperatures exceeding 786 °C. The activation energy for the key decomposition process between 722 and 786 °C was calculated to be 257 kJ/mol, indicating an energy-intensive reaction involving sulfur evaporation and structural reorganization. DTA analysis highlighted a major endothermic event at 789 °C. Additionally, DSC analysis identified two thermal processes with activation energies of 117 and 53 kJ/mol, respectively. These findings demonstrate that GaS not only maintains its structural integrity at high temperatures but also possesses unique thermal properties, making it a promising candidate for high-temperature electronics, thermophotovoltaics, and sensor technologies where thermal robustness is essential.

探索高温应用中硫化镓(GaS)的热性能
硫化镓(GaS)材料的热稳定性和分解行为是决定其高温应用适用性的关键因素。本研究利用热重分析(TGA)、差热分析(DTA)和差示扫描量热法(DSC)对GaS化合物进行了全面研究,以评估其热稳定性、分解机制和潜在的应用前景。TGA结果表明,GaS在722°C以下表现出显著的热稳定性,在超过786°C时观察到明显的失重。在722 ~ 786℃之间的关键分解过程的活化能为257 kJ/mol,表明这是一个涉及硫蒸发和结构重组的高能量反应。DTA分析强调了789°C的主要吸热事件。DSC分析还发现了两个活化能分别为117和53 kJ/mol的热过程。这些发现表明,GaS不仅在高温下保持其结构完整性,而且具有独特的热性能,使其成为高温电子、热光伏和传感器技术的有希望的候选者,这些技术的热稳健性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信