From morphogenesis to morphodynamics neuroscience: modeling the growth of dendritic shape in pyramidal cells of the piriform cortex in infant rats

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Enver M. Oruro, Grace E. Pardo
{"title":"From morphogenesis to morphodynamics neuroscience: modeling the growth of dendritic shape in pyramidal cells of the piriform cortex in infant rats","authors":"Enver M. Oruro,&nbsp;Grace E. Pardo","doi":"10.1140/epjb/s10051-025-00917-2","DOIUrl":null,"url":null,"abstract":"<div><p>Within the framework of morphogenesis of complex systems proposed by Turing, Hely, and Lesne-Bourgine, we modeled the growth of the dendritic shape of the anterior piriform cortex (aPC) pyramidal cells within the first 2 weeks of the postnatal period of development. We used agent-based modeling with three diffusion models (microtubule-associated protein 2, tubulin, and calcium) and mathematical equations to represent the dendritic growth of developing neurons. We adjusted the timing and distribution of dendritic growth to fit experimental data from the literature. We first simulate the dendritic growth of aPC pyramidal cells adjusted to postnatal day (PND) 1, on which a group of neurons was simulated mimicking the development of dendritic growth from PND 1–7 (phase 1) and from PND 7 to 14 (phase 2). Our agent-based model produced simulated dendrites that fit the general characteristic morphology (branching and elongation) of actual aPC pyramidal cells. However, the simulation per dendritic layer only fits the morphology of L2 but not the L1b or L1a of the actual pyramidal cell. We discuss these results in the context of morphodynamics neuroscience in complex systems, where the particular characteristics of a neuron’s neighborhood could limit its dendritic growth. Each neighborhood is different for each brain region, and these interactions could define its shape. It could be that microcircuitry, the organization of efferent and afferent connectivity, learning, and contingencies, organizes the shape of a certain brain region.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00917-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Within the framework of morphogenesis of complex systems proposed by Turing, Hely, and Lesne-Bourgine, we modeled the growth of the dendritic shape of the anterior piriform cortex (aPC) pyramidal cells within the first 2 weeks of the postnatal period of development. We used agent-based modeling with three diffusion models (microtubule-associated protein 2, tubulin, and calcium) and mathematical equations to represent the dendritic growth of developing neurons. We adjusted the timing and distribution of dendritic growth to fit experimental data from the literature. We first simulate the dendritic growth of aPC pyramidal cells adjusted to postnatal day (PND) 1, on which a group of neurons was simulated mimicking the development of dendritic growth from PND 1–7 (phase 1) and from PND 7 to 14 (phase 2). Our agent-based model produced simulated dendrites that fit the general characteristic morphology (branching and elongation) of actual aPC pyramidal cells. However, the simulation per dendritic layer only fits the morphology of L2 but not the L1b or L1a of the actual pyramidal cell. We discuss these results in the context of morphodynamics neuroscience in complex systems, where the particular characteristics of a neuron’s neighborhood could limit its dendritic growth. Each neighborhood is different for each brain region, and these interactions could define its shape. It could be that microcircuitry, the organization of efferent and afferent connectivity, learning, and contingencies, organizes the shape of a certain brain region.

Graphical abstract

从形态发生到形态动力学神经科学:模拟幼年大鼠梨状皮质锥体细胞树突形状的生长
在Turing, Hely和Lesne-Bourgine提出的复杂系统形态发生的框架内,我们模拟了出生后2周内前梨状皮质(aPC)锥体细胞树突状的生长。我们使用基于agent的建模方法,采用三种扩散模型(微管相关蛋白2、微管蛋白和钙)和数学方程来表示发育中的神经元的树突生长。我们调整了树突生长的时间和分布,以适应文献中的实验数据。我们首先模拟aPC锥体细胞在产后1 (PND)调整后的树突生长,在此基础上模拟一组神经元从PND 1 - 7(第1阶段)和PND 7 - 14(第2阶段)的树突生长发育。我们基于智能体的模型产生的模拟树突符合实际aPC锥体细胞的一般特征形态(分支和伸长)。然而,每个树突层的模拟只适合L2的形态,而不是实际锥体细胞的L1b或L1a。我们在复杂系统中形态动力学神经科学的背景下讨论这些结果,其中神经元邻近区域的特定特征可能限制其树突生长。每个邻域对每个大脑区域来说都是不同的,这些相互作用可以定义它的形状。它可能是微电路,组织传出和传入连接,学习和偶然事件,组织特定大脑区域的形状。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信