Influence of biaxial strain on the optoelectronic properties of Se-doped monolayer MoTe2

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Jinghao Wang, Guili Liu, Xiaotong Yang, Jianlin He, Mengting Ma, Ying Dai, Zilian Tian, Guoying Zhang
{"title":"Influence of biaxial strain on the optoelectronic properties of Se-doped monolayer MoTe2","authors":"Jinghao Wang,&nbsp;Guili Liu,&nbsp;Xiaotong Yang,&nbsp;Jianlin He,&nbsp;Mengting Ma,&nbsp;Ying Dai,&nbsp;Zilian Tian,&nbsp;Guoying Zhang","doi":"10.1140/epjb/s10051-025-00932-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the effect of biaxial strain on the optoelectronic properties of Se-doped monolayer MoTe<sub>2</sub> (Se–MoTe₂) is systematically investigated using first-principles calculations based on density functional theory. The results demonstrate that the bandgap of the system increases from the intrinsic value of 1.049–1.064 eV upon substituting Te with Se while maintaining direct bandgap characteristics. The bandgap decreases significantly under biaxial tensile strain, with the system undergoing a semiconductor-to-metal transition at 12% tensile strain. Compressive strain induces a transition from direct to indirect bandgap and enhances charge transfer. Strain profoundly influences optical properties: Tensile strain causes red-shifted absorption and reflection peaks, increases the real part of the dielectric function, and elevates electron hopping probability. Conversely, compressive strain induces blue-shifted optical responses, with the absorption coefficient reaching a maximum value of 1.43 × 10<sup>5</sup> cm⁻<sup>1</sup> at – 9% strain, accompanied by substantial light absorption enhancement. These findings establish a theoretical foundation for the material's applications in optoelectronic devices.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00932-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the effect of biaxial strain on the optoelectronic properties of Se-doped monolayer MoTe2 (Se–MoTe₂) is systematically investigated using first-principles calculations based on density functional theory. The results demonstrate that the bandgap of the system increases from the intrinsic value of 1.049–1.064 eV upon substituting Te with Se while maintaining direct bandgap characteristics. The bandgap decreases significantly under biaxial tensile strain, with the system undergoing a semiconductor-to-metal transition at 12% tensile strain. Compressive strain induces a transition from direct to indirect bandgap and enhances charge transfer. Strain profoundly influences optical properties: Tensile strain causes red-shifted absorption and reflection peaks, increases the real part of the dielectric function, and elevates electron hopping probability. Conversely, compressive strain induces blue-shifted optical responses, with the absorption coefficient reaching a maximum value of 1.43 × 105 cm⁻1 at – 9% strain, accompanied by substantial light absorption enhancement. These findings establish a theoretical foundation for the material's applications in optoelectronic devices.

Graphical abstract

双轴应变对掺杂硒单层MoTe2光电性能的影响
本文采用基于密度泛函理论的第一性原理计算方法,系统地研究了双轴应变对掺杂硒单层MoTe2 (Se-MoTe₂)光电性能的影响。结果表明,在保持直接带隙特性的情况下,用Se取代Te后,系统的带隙从1.049 ~ 1.064 eV的固有值增加。在双轴拉伸应变下,带隙显著减小,系统在12%拉伸应变下经历了半导体到金属的转变。压缩应变诱导直接带隙向间接带隙转变,增强电荷转移。应变对光学性质影响深远:拉伸应变引起吸收和反射峰红移,增加介电函数实部,提高电子跳变概率。相反,压缩应变引起蓝移光学响应,在- 9%应变下,吸收系数达到最大值1.43 × 105 cm⁻1,并伴有明显的光吸收增强。这些发现为该材料在光电器件中的应用奠定了理论基础。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信