{"title":"Intensification of n-octyl acetate synthesis over H5PW10V2O40/FAC catalyst using ultrasound-assisted reactor","authors":"Vishnu A Gite, Virendra K Rathod","doi":"10.1007/s12039-025-02355-0","DOIUrl":null,"url":null,"abstract":"<div><p>The orange flavour, <i>n</i>-octyl acetate, was synthesized in the presence of ultrasound (US) over an H<sub>5</sub>PW<sub>10</sub>V<sub>2</sub>O<sub>40</sub> /FAC catalyst. The effect of parameters such as temperature (A), alcohol to acid ratio (B), duty cycle (C) and ultrasound power (D) on the conversion was optimised using response surface methodology. Various experiments were designed as per the central composite design method using the design of expert software. The relation between operating variables and conversion was established by a quadratic mathematical model equation. The relation of independent variables and their effect on conversion was explained by executing the statistical analysis and analysis of variance. The optimum solution of the maximum conversion of 78.2% in 180 minutes was obtained in the presence of US horn at parameters viz temperature (373 K), mole ratio (<i>n</i>-octyl alcohol to acetic acid) (2), duty cycle (80%) and ultrasound power (100 W). The intensification by US horn was compared to conventional processes.</p><h3>Graphical abstract</h3><p>The <i>n</i>-octyl acetate was synthesized over an H<sub>5</sub>PW<sub>10</sub>V<sub>2</sub>O<sub>40</sub>/FAC catalyst in the presence of ultrasound irradiation. It has many applications in cosmetics, hair products, and skin locations. The synthesis of <i>n</i>-octyl acetate in the ultrasound process was compared with the conventional synthesis. There was a considerable reduction in reaction time in ultrasound-assisted synthesis.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"137 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-025-02355-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The orange flavour, n-octyl acetate, was synthesized in the presence of ultrasound (US) over an H5PW10V2O40 /FAC catalyst. The effect of parameters such as temperature (A), alcohol to acid ratio (B), duty cycle (C) and ultrasound power (D) on the conversion was optimised using response surface methodology. Various experiments were designed as per the central composite design method using the design of expert software. The relation between operating variables and conversion was established by a quadratic mathematical model equation. The relation of independent variables and their effect on conversion was explained by executing the statistical analysis and analysis of variance. The optimum solution of the maximum conversion of 78.2% in 180 minutes was obtained in the presence of US horn at parameters viz temperature (373 K), mole ratio (n-octyl alcohol to acetic acid) (2), duty cycle (80%) and ultrasound power (100 W). The intensification by US horn was compared to conventional processes.
Graphical abstract
The n-octyl acetate was synthesized over an H5PW10V2O40/FAC catalyst in the presence of ultrasound irradiation. It has many applications in cosmetics, hair products, and skin locations. The synthesis of n-octyl acetate in the ultrasound process was compared with the conventional synthesis. There was a considerable reduction in reaction time in ultrasound-assisted synthesis.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.