Ramūnas Digaitis, Greeley Beck, Sune Tjalfe Thomsen, Maria Fredriksson, Emil Engelund Thybring
{"title":"Nano-scale porosity of water-swollen wood cell walls: analysis of solute exclusion data from a new perspective","authors":"Ramūnas Digaitis, Greeley Beck, Sune Tjalfe Thomsen, Maria Fredriksson, Emil Engelund Thybring","doi":"10.1007/s10570-025-06494-y","DOIUrl":null,"url":null,"abstract":"<div><p>The solute exclusion technique (SET) is often used to characterise the nano-porous structure of water-swollen cell walls. SET is based on the immersion of water-saturated wood samples in solutions of probe molecules of known size. Based on determined concentration differences in the solution before and after immersion, the accessible water within the wood is determined for each probe. However, this assumes that the concentration of probe molecules is the same in the pores of the material as in the surrounding bulk solution, but the concentration in narrow pores is actually lower than in the bulk solution. This study investigated the nano-porous structure of water-swollen wood cell walls by incorporating these known effects of concentration differences in narrow pores into the analysis. Based on solute exclusion measurements on both untreated and hydrothermally treated Norway spruce wood, the study explored the effect of modification on the nano-porous cell wall structure as well as potential sources of uncertainties such as soaking time, osmotic effects and probe molecule adsorption. The results suggested that the water-swollen, nano-porous structure of untreated and hydrothermally treated Norway spruce was dominated by one characteristic pore size which increased by hydrothermal treatment. The exact size depended on the assumed geometry of the pores.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"32 6","pages":"3583 - 3595"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10570-025-06494-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-025-06494-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
The solute exclusion technique (SET) is often used to characterise the nano-porous structure of water-swollen cell walls. SET is based on the immersion of water-saturated wood samples in solutions of probe molecules of known size. Based on determined concentration differences in the solution before and after immersion, the accessible water within the wood is determined for each probe. However, this assumes that the concentration of probe molecules is the same in the pores of the material as in the surrounding bulk solution, but the concentration in narrow pores is actually lower than in the bulk solution. This study investigated the nano-porous structure of water-swollen wood cell walls by incorporating these known effects of concentration differences in narrow pores into the analysis. Based on solute exclusion measurements on both untreated and hydrothermally treated Norway spruce wood, the study explored the effect of modification on the nano-porous cell wall structure as well as potential sources of uncertainties such as soaking time, osmotic effects and probe molecule adsorption. The results suggested that the water-swollen, nano-porous structure of untreated and hydrothermally treated Norway spruce was dominated by one characteristic pore size which increased by hydrothermal treatment. The exact size depended on the assumed geometry of the pores.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.