Exploring a new synthesis route to lithium-excess disordered rock salt (DRX) cathode materials†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matthew S. Chambers, Tianyu Li, Zhilin Liang, Jong Keum, Kevin H. Stone, Raphaële J. Clément, Beth L. Armstrong and Ethan C. Self
{"title":"Exploring a new synthesis route to lithium-excess disordered rock salt (DRX) cathode materials†","authors":"Matthew S. Chambers, Tianyu Li, Zhilin Liang, Jong Keum, Kevin H. Stone, Raphaële J. Clément, Beth L. Armstrong and Ethan C. Self","doi":"10.1039/D4MA01287A","DOIUrl":null,"url":null,"abstract":"<p >Lithium-excess disordered rock salt (DRX) materials are promising candidates for Co/Ni-free Li-ion cathodes due to their high specific energy (800+ W h kg<small><sup>−1</sup></small>) and compositional flexibility. DRX cathodes are typically synthesized using solid-state reactions, which are difficult to scale and provide little-to-no control over particle morphology. To address this bottleneck, the present study reports a two-step, solution-based reaction route to prepare Mn/Ti-based DRX oxyfluoride cathodes with nominal compositions of Li<small><sub>1.25</sub></small>Mn<small><sub>0.5</sub></small>Ti<small><sub>0.3</sub></small>O<small><sub>1.95</sub></small>F<small><sub>0.05</sub></small> and Li<small><sub>1.35</sub></small>Mn<small><sub>0.7</sub></small>Ti<small><sub>0.1</sub></small>O<small><sub>1.85</sub></small>F<small><sub>0.15</sub></small>. More specifically, a glycine–nitrate combustion reaction is used to produce a lithiated transition metal oxide, which is further reacted with LiF to produce high-purity DRX powders. Remarkably, this route yields 80–90% pure DRX after annealing for 1 h at 800–1000 °C, and <small><sup>19</sup></small>F solid-state nuclear magnetic resonance (ssNMR) spectra demonstrate that F<small><sup>−</sup></small> anions are successfully incorporated into the DRX structure. Cathodes prepared using this approach exhibit promising electrochemical performance, with Li<small><sub>1.35</sub></small>Mn<small><sub>0.7</sub></small>Ti<small><sub>0.1</sub></small>O<small><sub>1.85</sub></small>F<small><sub>0.15</sub></small> attaining reversible capacities ∼210 mA h g<small><sup>−1</sup></small> and moderate cycling stability in half cells (65% capacity retention over 150 cycles). Overall, these results demonstrate that utilizing novel metal oxide precursors presents a viable and largely unexplored method to produce high-performance Co/Ni-free DRX cathodes.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 9","pages":" 2990-3001"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01287a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-excess disordered rock salt (DRX) materials are promising candidates for Co/Ni-free Li-ion cathodes due to their high specific energy (800+ W h kg−1) and compositional flexibility. DRX cathodes are typically synthesized using solid-state reactions, which are difficult to scale and provide little-to-no control over particle morphology. To address this bottleneck, the present study reports a two-step, solution-based reaction route to prepare Mn/Ti-based DRX oxyfluoride cathodes with nominal compositions of Li1.25Mn0.5Ti0.3O1.95F0.05 and Li1.35Mn0.7Ti0.1O1.85F0.15. More specifically, a glycine–nitrate combustion reaction is used to produce a lithiated transition metal oxide, which is further reacted with LiF to produce high-purity DRX powders. Remarkably, this route yields 80–90% pure DRX after annealing for 1 h at 800–1000 °C, and 19F solid-state nuclear magnetic resonance (ssNMR) spectra demonstrate that F anions are successfully incorporated into the DRX structure. Cathodes prepared using this approach exhibit promising electrochemical performance, with Li1.35Mn0.7Ti0.1O1.85F0.15 attaining reversible capacities ∼210 mA h g−1 and moderate cycling stability in half cells (65% capacity retention over 150 cycles). Overall, these results demonstrate that utilizing novel metal oxide precursors presents a viable and largely unexplored method to produce high-performance Co/Ni-free DRX cathodes.

探索过量锂无序岩盐(DRX)正极材料合成新途径
过量锂无序岩盐(DRX)材料因其高比能(800+ W h kg - 1)和成分灵活性而成为无Co/ ni锂离子阴极的有希望的候选者。DRX阴极通常是用固态反应合成的,这种反应很难规模化,而且对颗粒形态几乎没有控制。为了解决这一瓶颈,本研究报告了一种两步法的溶液反应路线,以制备Mn/ ti基DRX氟化氧阴极,其标称成分为Li1.25Mn0.5Ti0.3O1.95F0.05和Li1.35Mn0.7Ti0.1O1.85F0.15。更具体地说,甘氨酸-硝酸盐燃烧反应用于生产锂化过渡金属氧化物,该氧化物进一步与liff反应以生产高纯度的DRX粉末。值得注意的是,在800-1000°C下退火1小时后,该路线得到80-90%纯度的DRX,并且19F固态核磁共振(ssNMR)光谱表明,F−阴离子成功地融入到DRX结构中。用这种方法制备的阴极表现出很好的电化学性能,Li1.35Mn0.7Ti0.1O1.85F0.15的可逆容量达到~ 210 mA h g - 1,在半电池中具有中等的循环稳定性(150次循环后容量保持65%)。总的来说,这些结果表明,利用新型金属氧化物前驱体是一种可行的、很大程度上尚未开发的生产高性能无Co/ ni DRX阴极的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信