Acceleration Measurement-Free Dissipative Disturbance Observer for Robotic Manipulators

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Seonwoo Kim;Chanwoo Kim;Yeonho Ko;Daehie Hong
{"title":"Acceleration Measurement-Free Dissipative Disturbance Observer for Robotic Manipulators","authors":"Seonwoo Kim;Chanwoo Kim;Yeonho Ko;Daehie Hong","doi":"10.1109/LRA.2025.3564205","DOIUrl":null,"url":null,"abstract":"In this letter, we propose an Acceleration Measurement-Free Dissipative Disturbance Observer (AFDDO) for robotic manipulators, designed to estimate external disturbances robustly without requiring angular acceleration measurements and matrix inversion. By leveraging dissipativity theory, the AFDDO achieves enhanced robustness and stability against fast-varying disturbances. A linear matrix inequality (LMI)-based approach is employed for observer gain tuning, enabling efficient computation and control of observer bandwidth. Unlike conventional methods, the AFDDO eliminates the need for matrix inversion and utilizes generalized momentum to maintain an acceleration measurement-free condition. The proposed observer was validated through simulations and experiments using a mini-hydraulic excavator, demonstrating superior performance in disturbance estimation compared to existing nonlinear disturbance observers.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5999-6006"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10976407/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we propose an Acceleration Measurement-Free Dissipative Disturbance Observer (AFDDO) for robotic manipulators, designed to estimate external disturbances robustly without requiring angular acceleration measurements and matrix inversion. By leveraging dissipativity theory, the AFDDO achieves enhanced robustness and stability against fast-varying disturbances. A linear matrix inequality (LMI)-based approach is employed for observer gain tuning, enabling efficient computation and control of observer bandwidth. Unlike conventional methods, the AFDDO eliminates the need for matrix inversion and utilizes generalized momentum to maintain an acceleration measurement-free condition. The proposed observer was validated through simulations and experiments using a mini-hydraulic excavator, demonstrating superior performance in disturbance estimation compared to existing nonlinear disturbance observers.
机械臂无加速度测量耗散扰动观测器
在这封信中,我们为机器人机械手提出了一种无加速度测量的耗散干扰观测器(AFDDO),旨在鲁棒地估计外部干扰,而不需要角加速度测量和矩阵反演。通过利用耗散率理论,AFDDO对快速变化的干扰具有增强的鲁棒性和稳定性。采用基于线性矩阵不等式(LMI)的方法进行观测器增益调谐,实现了观测器带宽的高效计算和控制。与传统方法不同,AFDDO消除了矩阵反演的需要,并利用广义动量来保持无加速度测量的条件。通过小型液压挖掘机的仿真和实验验证了所提出的观测器,与现有的非线性干扰观测器相比,该观测器具有更好的干扰估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信