{"title":"Catalytic alkaline hydrolysis of PET and BPA-PC waste in minutes at atmospheric pressure without microwaves or organic solvents†","authors":"Anshul Jain , Stephen J. Connon","doi":"10.1039/d5gc01183c","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid hydrolysis of poly(ethylene terephthalate) (PET) waste usually requires organic cosolvents, high pressures or microwave irradiation, which can increase the environmental impact/expense/operational complexity of an emerging enabling technology for more sustainable plastic recycling. Using a combination of solute-derived boiling point elevation and phase transfer catalysis, operationally facile, rapid alkaline hydrolysis of PET and poly(bisphenol A carbonate) (BPA-PC) waste – from beverage bottles/textiles and compact discs respectively – is achievable in minutes (≤5 min for PET and 20 min for BPA-PC) at atmospheric pressure without the need for either microwaves or organic cosolvents. Dimethyldialkylammonium halides were found to be optimal catalysts at low loadings. The rapid, one-pot catalytic hydrolysis of a waste stream of both plastics followed by ready isolation of the terephthalic acid and bis-phenol A monomer units in excellent yields (without decomposition) is possible by selective protonolysis.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 18","pages":"Pages 4986-4994"},"PeriodicalIF":9.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225002675","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid hydrolysis of poly(ethylene terephthalate) (PET) waste usually requires organic cosolvents, high pressures or microwave irradiation, which can increase the environmental impact/expense/operational complexity of an emerging enabling technology for more sustainable plastic recycling. Using a combination of solute-derived boiling point elevation and phase transfer catalysis, operationally facile, rapid alkaline hydrolysis of PET and poly(bisphenol A carbonate) (BPA-PC) waste – from beverage bottles/textiles and compact discs respectively – is achievable in minutes (≤5 min for PET and 20 min for BPA-PC) at atmospheric pressure without the need for either microwaves or organic cosolvents. Dimethyldialkylammonium halides were found to be optimal catalysts at low loadings. The rapid, one-pot catalytic hydrolysis of a waste stream of both plastics followed by ready isolation of the terephthalic acid and bis-phenol A monomer units in excellent yields (without decomposition) is possible by selective protonolysis.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.