Quang Thang Trinh , Nicholas Golio , Yuran Cheng , Haotian Cha , Kin Un Tai , Lingxi Ouyang , Jun Zhao , Tuan Sang Tran , Tuan-Khoa Nguyen , Jun Zhang , Hongjie An , Zuojun Wei , Francois Jerome , Prince Nana Amaniampong , Nam-Trung Nguyen
{"title":"Sonochemistry and sonocatalysis: current progress, existing limitations, and future opportunities in green and sustainable chemistry†","authors":"Quang Thang Trinh , Nicholas Golio , Yuran Cheng , Haotian Cha , Kin Un Tai , Lingxi Ouyang , Jun Zhao , Tuan Sang Tran , Tuan-Khoa Nguyen , Jun Zhang , Hongjie An , Zuojun Wei , Francois Jerome , Prince Nana Amaniampong , Nam-Trung Nguyen","doi":"10.1039/d5gc01098e","DOIUrl":null,"url":null,"abstract":"<div><div>Sonocatalysis is a specialised field within sonochemistry that leverages the interaction between ultrasound and solid catalysts to enhance the rate and selectivity of chemical reactions. As a non-traditional catalytic activation method, sonocatalysis can profoundly modify reaction mechanisms and unlock novel activation pathways that are not typically accessible through standard catalysis. This unique approach offers new opportunities for driving reactions under milder conditions while potentially improving selectivity and efficiency. This review highlights the recent progress of sonocatalytic applications in green chemistry and their contribution to the United Nations' Sustainable Development Goals (SDGs), including environmental remediation, sonotherapy, and biomass conversion. In these applications, we explore the underlying sonocatalytic mechanisms and the interaction between solid catalysts and ultrasound, which drive the enhanced reactivity. A key feature of this manuscript is its comprehensive analysis of the primary technical challenges in sonocatalysis, specifically its low energy efficiency and the complexity of reaction control. To address these hurdles, we examine various effective strategies, such as the incorporation of nanostructured catalytic cavitation agents and the design of advanced microfluidic sonoreactors. These innovations improve energy transfer, control bubble dynamics, and enhance catalytic activity under ultrasound. Furthermore, we implement molecular modelling to gain fundamental insights into the mechanisms fundamental to the effectiveness of sonocatalysts. This approach provides a deeper understanding of how nanostructured catalysts interact with ultrasonic fields, guiding the design of next-generation catalytic materials. The integration of nanostructured catalytic cavitation agents, microfluidic reactor technologies, and computational molecular modelling forms a trilateral synergistic platform that unlocks new potential in sonocatalysis. This multidisciplinary framework paves the way for significant advancements in green and sustainable chemistry, offering innovative solutions to global challenges in energy, health, and environmental sustainability.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 18","pages":"Pages 4926-4958"},"PeriodicalIF":9.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225003000","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sonocatalysis is a specialised field within sonochemistry that leverages the interaction between ultrasound and solid catalysts to enhance the rate and selectivity of chemical reactions. As a non-traditional catalytic activation method, sonocatalysis can profoundly modify reaction mechanisms and unlock novel activation pathways that are not typically accessible through standard catalysis. This unique approach offers new opportunities for driving reactions under milder conditions while potentially improving selectivity and efficiency. This review highlights the recent progress of sonocatalytic applications in green chemistry and their contribution to the United Nations' Sustainable Development Goals (SDGs), including environmental remediation, sonotherapy, and biomass conversion. In these applications, we explore the underlying sonocatalytic mechanisms and the interaction between solid catalysts and ultrasound, which drive the enhanced reactivity. A key feature of this manuscript is its comprehensive analysis of the primary technical challenges in sonocatalysis, specifically its low energy efficiency and the complexity of reaction control. To address these hurdles, we examine various effective strategies, such as the incorporation of nanostructured catalytic cavitation agents and the design of advanced microfluidic sonoreactors. These innovations improve energy transfer, control bubble dynamics, and enhance catalytic activity under ultrasound. Furthermore, we implement molecular modelling to gain fundamental insights into the mechanisms fundamental to the effectiveness of sonocatalysts. This approach provides a deeper understanding of how nanostructured catalysts interact with ultrasonic fields, guiding the design of next-generation catalytic materials. The integration of nanostructured catalytic cavitation agents, microfluidic reactor technologies, and computational molecular modelling forms a trilateral synergistic platform that unlocks new potential in sonocatalysis. This multidisciplinary framework paves the way for significant advancements in green and sustainable chemistry, offering innovative solutions to global challenges in energy, health, and environmental sustainability.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.