Trajectory Optimization Under Stochastic Dynamics Leveraging Maximum Mean Discrepancy

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Basant Sharma;Arun Kumar Singh
{"title":"Trajectory Optimization Under Stochastic Dynamics Leveraging Maximum Mean Discrepancy","authors":"Basant Sharma;Arun Kumar Singh","doi":"10.1109/LRA.2025.3565335","DOIUrl":null,"url":null,"abstract":"This paper addresses sampling-based trajectory optimization for risk-aware navigation under stochastic dynamics. Typically such approaches operate by computing <inline-formula><tex-math>$\\tilde{N}$</tex-math></inline-formula> perturbed rollouts around the nominal dynamics to estimate the collision risk associated with a sequence of control commands. We consider a setting where it is expensive to estimate risk using perturbed rollouts, for example, due to expensive collision-checks. We put forward two key contributions. First, we develop an algorithm that distills the statistical information from a larger set of rollouts to a <italic>reduced-set</i> with sample size <inline-formula><tex-math>$N&lt; &lt; \\tilde{N}$</tex-math></inline-formula>. Consequently, we estimate collision risk using just <inline-formula><tex-math>$N$</tex-math></inline-formula> rollouts instead of <inline-formula><tex-math>$\\tilde{N}$</tex-math></inline-formula>. Second, we formulate a novel surrogate for the collision risk that can leverage the distilled statistical information contained in the <italic>reduced-set</i>. We formalize both algorithmic contributions using distribution embedding in Reproducing Kernel Hilbert Space (RKHS) and Maximum Mean Discrepancy (MMD). We perform extensive benchmarking to demonstrate that our MMD-based approach leads to safer trajectories at low sample regime than existing baselines using Conditional Value-at Risk (CVaR) based collision risk estimate.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"6079-6086"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979910","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979910/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses sampling-based trajectory optimization for risk-aware navigation under stochastic dynamics. Typically such approaches operate by computing $\tilde{N}$ perturbed rollouts around the nominal dynamics to estimate the collision risk associated with a sequence of control commands. We consider a setting where it is expensive to estimate risk using perturbed rollouts, for example, due to expensive collision-checks. We put forward two key contributions. First, we develop an algorithm that distills the statistical information from a larger set of rollouts to a reduced-set with sample size $N< < \tilde{N}$. Consequently, we estimate collision risk using just $N$ rollouts instead of $\tilde{N}$. Second, we formulate a novel surrogate for the collision risk that can leverage the distilled statistical information contained in the reduced-set. We formalize both algorithmic contributions using distribution embedding in Reproducing Kernel Hilbert Space (RKHS) and Maximum Mean Discrepancy (MMD). We perform extensive benchmarking to demonstrate that our MMD-based approach leads to safer trajectories at low sample regime than existing baselines using Conditional Value-at Risk (CVaR) based collision risk estimate.
利用最大均值差异的随机动力学下的轨迹优化
研究随机动力学下基于采样的风险感知导航轨迹优化问题。通常,这种方法通过计算标称动力学周围的$\波浪{N}$扰动滚动来估计与一系列控制命令相关的碰撞风险。我们考虑一种设置,在这种设置中,由于昂贵的碰撞检查,使用扰动滚动来估计风险是昂贵的。我们提出了两项重要贡献。首先,我们开发了一种算法,该算法将统计信息从更大的推出集提取到样本大小为$N<;& lt;\波浪号{N} $。因此,我们只使用$N$ rollrollts而不是$\tilde{N}$来估计碰撞风险。其次,我们为碰撞风险制定了一个新的代理,该代理可以利用约简集中包含的蒸馏统计信息。我们使用分布嵌入在再现核希尔伯特空间(RKHS)和最大平均差异(MMD)中形式化这两种算法的贡献。我们进行了广泛的基准测试,以证明我们基于mmd的方法在低样本状态下比使用基于条件风险值(CVaR)的碰撞风险估计的现有基线更安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信