S. Nissim , O. Aviv , M. Brandis , L. Weissman , Z. Yungrais , E. Gilad
{"title":"Study of positron emission from 36Cl","authors":"S. Nissim , O. Aviv , M. Brandis , L. Weissman , Z. Yungrais , E. Gilad","doi":"10.1016/j.apradiso.2025.111870","DOIUrl":null,"url":null,"abstract":"<div><div>The absolute intensity of the weak branch for positron emission from <sup>36</sup>Cl was evaluated using a β-γ coincidence technique. A liquid sample with known activity of <sup>36</sup>Cl was embedded in scintillation cocktail and measured in a 4παβ(LS)-γ(HPGe) system that comprises a Liquid Scintillator (LS) detector and a High-Purity Germanium (HPGe) detector. The LS detector includes a photo-reflector assembly that holds the liquid sample and ensures high efficiency for β particles. The recorded timestamp and energy for β and γ events provided a highly effective mechanism for filtering out events that originated from outside the volume of the measured sample, thereby allowing a clear observation of the 511-keV γ-rays associated with positron emission from <sup>36</sup>Cl. Hence, the positron branch intensity can be evaluated directly in a practically background-free environment. The system was calibrated for detecting β particles and γ rays at relevant energies using radioactive sources having identical geometry as employed in the <sup>36</sup>Cl sample measurement. The absolute intensity of the positron emission was found to be (1.62 ± 0.15) × 10<sup>−5</sup>, in agreement with the values appearing in the literature.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"222 ","pages":"Article 111870"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804325002155","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The absolute intensity of the weak branch for positron emission from 36Cl was evaluated using a β-γ coincidence technique. A liquid sample with known activity of 36Cl was embedded in scintillation cocktail and measured in a 4παβ(LS)-γ(HPGe) system that comprises a Liquid Scintillator (LS) detector and a High-Purity Germanium (HPGe) detector. The LS detector includes a photo-reflector assembly that holds the liquid sample and ensures high efficiency for β particles. The recorded timestamp and energy for β and γ events provided a highly effective mechanism for filtering out events that originated from outside the volume of the measured sample, thereby allowing a clear observation of the 511-keV γ-rays associated with positron emission from 36Cl. Hence, the positron branch intensity can be evaluated directly in a practically background-free environment. The system was calibrated for detecting β particles and γ rays at relevant energies using radioactive sources having identical geometry as employed in the 36Cl sample measurement. The absolute intensity of the positron emission was found to be (1.62 ± 0.15) × 10−5, in agreement with the values appearing in the literature.
期刊介绍:
Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria.
Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.