Towards a complete task-based implementation of a 3D particle-in-cell code: Performance studies and benchmarks

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
J.J. Silva-Cuevas , M. Zych , K. Peyen , I. Kabadshow , M. Lobet
{"title":"Towards a complete task-based implementation of a 3D particle-in-cell code: Performance studies and benchmarks","authors":"J.J. Silva-Cuevas ,&nbsp;M. Zych ,&nbsp;K. Peyen ,&nbsp;I. Kabadshow ,&nbsp;M. Lobet","doi":"10.1016/j.cpc.2025.109647","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates different programming models for miniPIC, a Particle-In-Cell mini-app, to improve overall scalability. An innovative implementation of a fully asynchronous task-based implementation of a 3D Particle-In-Cell code miniPIC is presented for the first time. The task-based model has been specially implemented in the particle-in-cell code via the backend OpenMP and the library Eventify. Four physical studies were selected as benchmarks: thermal plasma, plasma beam diffusion, a laser colliding with a plasma beam sphere, and thermal plasma with an imbalanced artificial operator. Besides, different parametric studies were designed to measure the scalability of the implementation to varying numbers of cores and various physical conditions. The current parametric studies were performed in an Intel cascade lake-based machine and an AMD EPYC-based machine to measure scalability performance on different architectures.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"313 ","pages":"Article 109647"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001493","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates different programming models for miniPIC, a Particle-In-Cell mini-app, to improve overall scalability. An innovative implementation of a fully asynchronous task-based implementation of a 3D Particle-In-Cell code miniPIC is presented for the first time. The task-based model has been specially implemented in the particle-in-cell code via the backend OpenMP and the library Eventify. Four physical studies were selected as benchmarks: thermal plasma, plasma beam diffusion, a laser colliding with a plasma beam sphere, and thermal plasma with an imbalanced artificial operator. Besides, different parametric studies were designed to measure the scalability of the implementation to varying numbers of cores and various physical conditions. The current parametric studies were performed in an Intel cascade lake-based machine and an AMD EPYC-based machine to measure scalability performance on different architectures.
迈向一个完整的基于任务的3D粒子单元代码实现:性能研究和基准
本文研究了miniPIC(一个Particle-In-Cell小应用程序)的不同编程模型,以提高整体可伸缩性。首次提出了一种基于全异步任务的3D粒子单元代码miniPIC的创新实现。基于任务的模型已经通过后端OpenMP和库Eventify在粒子单元代码中特别实现。选取了热等离子体、等离子体束扩散、激光与等离子体束球碰撞、热等离子体与不平衡人工算子的四个物理研究作为基准。此外,设计了不同的参数研究来衡量实现在不同核数和各种物理条件下的可扩展性。目前的参数研究是在基于Intel级联湖的机器和基于AMD epyc的机器上进行的,以测量不同架构上的可扩展性性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信