Beatriz Lucas Garrote , Marta Vegas-García , Ellinor Hedberg , Federico Ribet , Niclas Roxhed , Laura García-Carmona , Alfredo Quijano-López , Marta García-Pellicer
{"title":"Wearable device for in-situ plant sap analysis: Electrochemical lateral flow (eLF) for stress monitoring in living plants","authors":"Beatriz Lucas Garrote , Marta Vegas-García , Ellinor Hedberg , Federico Ribet , Niclas Roxhed , Laura García-Carmona , Alfredo Quijano-López , Marta García-Pellicer","doi":"10.1016/j.bios.2025.117550","DOIUrl":null,"url":null,"abstract":"<div><div>Smart agriculture and environmental monitoring claim innovative wearable sensing technologies suitable for real-time, <em>in-situ</em> biochemical analysis for non-specialized users in plants. Current strategies measure physical parameters, ions or hormones by amperometry or potentiometry. Among these, plant hormones serve as stress biomarkers due to their role in stress response mechanisms. While electrocatalysis has been explored for their detection, early-stage stress monitoring at low concentrations demands higher selectivity and specificity. Therefore, new strategies integrating biorecognition elements, such as antibodies, with autonomous sample collection and bioassay performance are required. In this regard, this work proposes a novel wearable immunosensor device based on an electrochemical lateral flow assay (eLF) that includes an autonomous microsampling technology for minimally invasive <em>in-situ</em> sap extraction and abscisic acid (ABA) detection. This sap device collects, processes and analyzes plant sap with low sample volume (<10 μL) and short assay time (9min) using immunosensing for the first time in ABA wearable detection. Validation in drought-stressed cucumber plants demonstrated 78 % sensitivity and 71 % specificity in detecting subtle water stress with 77 % accuracy. These findings highlight the potential of this plant-wearable biosensor for early stress detection and its versatility to be adapted for the detection of other relevant molecules (proteins or DNA), key for smart agriculture and environmental monitoring.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"283 ","pages":"Article 117550"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325004245","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Smart agriculture and environmental monitoring claim innovative wearable sensing technologies suitable for real-time, in-situ biochemical analysis for non-specialized users in plants. Current strategies measure physical parameters, ions or hormones by amperometry or potentiometry. Among these, plant hormones serve as stress biomarkers due to their role in stress response mechanisms. While electrocatalysis has been explored for their detection, early-stage stress monitoring at low concentrations demands higher selectivity and specificity. Therefore, new strategies integrating biorecognition elements, such as antibodies, with autonomous sample collection and bioassay performance are required. In this regard, this work proposes a novel wearable immunosensor device based on an electrochemical lateral flow assay (eLF) that includes an autonomous microsampling technology for minimally invasive in-situ sap extraction and abscisic acid (ABA) detection. This sap device collects, processes and analyzes plant sap with low sample volume (<10 μL) and short assay time (9min) using immunosensing for the first time in ABA wearable detection. Validation in drought-stressed cucumber plants demonstrated 78 % sensitivity and 71 % specificity in detecting subtle water stress with 77 % accuracy. These findings highlight the potential of this plant-wearable biosensor for early stress detection and its versatility to be adapted for the detection of other relevant molecules (proteins or DNA), key for smart agriculture and environmental monitoring.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.