Finite element-based analysis of blasting rock fragmentation using a digital sieving algorithm

IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Kaiwen Song , Xin Wei , Xiaoqing Wei , Yi Luo , Dengxing Qu , Tingting Liu , Xinping Li
{"title":"Finite element-based analysis of blasting rock fragmentation using a digital sieving algorithm","authors":"Kaiwen Song ,&nbsp;Xin Wei ,&nbsp;Xiaoqing Wei ,&nbsp;Yi Luo ,&nbsp;Dengxing Qu ,&nbsp;Tingting Liu ,&nbsp;Xinping Li","doi":"10.1016/j.ijrmms.2025.106141","DOIUrl":null,"url":null,"abstract":"<div><div>Fragmentation serves as a critical blasting quality indicator in hydropower engineering, directly influencing rock extraction efficiency, operational quality, and economic costs. This study introduces a simulation method based on finite element digital sieving to address the limitations of traditional finite element methods (FEM) in predicting fragmentation. The method integrates finite element results with damage mechanics theory, employing a calibrated damage threshold (<em>D</em><sub>0)</sub> to differentiate high-damage element (HDE) from slow-damage element (SDE). Fragment size distribution is determined through damage-size correlation mapping and a maximum Feret diameter algorithm, establishing quantitative connections between numerical simulations and actual fragmentation patterns. Validation through Split Hopkinson Pressure Bar (SHPB) testing at Tongcheng Pumped Storage Power Station enabled precise calibration of critical simulation parameters. The results demonstrate reliable prediction of fragmentation distributions, providing an effective computational framework for practical engineering implementation. The conforming-to-dynamite mass ratio (CDR) metric demonstrates that insufficient decoupling coefficients compromise detonation efficiency, whereas excessive values promote oversized fragment generation, providing valuable insights for optimizing blasting design in practice.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"192 ","pages":"Article 106141"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925001182","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fragmentation serves as a critical blasting quality indicator in hydropower engineering, directly influencing rock extraction efficiency, operational quality, and economic costs. This study introduces a simulation method based on finite element digital sieving to address the limitations of traditional finite element methods (FEM) in predicting fragmentation. The method integrates finite element results with damage mechanics theory, employing a calibrated damage threshold (D0) to differentiate high-damage element (HDE) from slow-damage element (SDE). Fragment size distribution is determined through damage-size correlation mapping and a maximum Feret diameter algorithm, establishing quantitative connections between numerical simulations and actual fragmentation patterns. Validation through Split Hopkinson Pressure Bar (SHPB) testing at Tongcheng Pumped Storage Power Station enabled precise calibration of critical simulation parameters. The results demonstrate reliable prediction of fragmentation distributions, providing an effective computational framework for practical engineering implementation. The conforming-to-dynamite mass ratio (CDR) metric demonstrates that insufficient decoupling coefficients compromise detonation efficiency, whereas excessive values promote oversized fragment generation, providing valuable insights for optimizing blasting design in practice.
基于有限元的爆破岩石破碎数字筛分算法分析
破碎度是水电工程爆破质量的重要指标,直接影响着抽岩效率、作业质量和经济成本。针对传统有限元方法在破碎预测中的局限性,提出了一种基于有限元数字筛分的模拟方法。该方法将有限元结果与损伤力学理论相结合,采用标定损伤阈值(D0)来区分高损伤单元(HDE)和慢损伤单元(SDE)。通过损伤-尺寸相关映射和最大Feret直径算法确定破片尺寸分布,在数值模拟和实际破片模式之间建立定量联系。通过同城抽水蓄能电站分段霍普金森压力棒(SHPB)测试验证,实现了关键模拟参数的精确校准。结果证明了碎片分布的可靠预测,为实际工程实现提供了有效的计算框架。聚类与炸药质量比(CDR)指标表明,不充分的解耦系数会影响爆轰效率,而过大的解耦系数则会促进超大破片的产生,这为实践中优化爆破设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
5.60%
发文量
196
审稿时长
18 weeks
期刊介绍: The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信